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Analysis of tree algorithm for collision
resolution†
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For the tree algorithm introduced by Capetanakis (1979) and Tsybakov and Mihailov (1978) letLN denote the ex-
pected collision resolution time given the collision multiplicityN . If L(z) stands for the Poisson transform ofLN ,
then we show thatLN − L(N) ' 1.29 · 10−4 cos(2π log2 N + 0.698).
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1 Collision Channel with Feedback
In multi-user communications the problem is how to serve many senders if one common communication
channel is given. The classical solution is a kind of multiplexing, i.e., either time-division multiplexing, or
frequency-division multiplexing. For partially active senders, always there are a large number of senders,
each which has nothing to send most of the time. In this communication situation the multiplexing is
inefficient. One such situation, namely the problem of communicating from remote terminals on vari-
ous islands of Hawaii via a common radio channel to the main central computer, led to the invention by
Abramson (1970) of the first formal random-access algorithm, now commonly called pure ALOHA and
to the design of a radio linked computer network, called ALOHANET (cf. Abramson (1985)). The per-
formance of the ALOHA protocol is very poor if the channel occupancy increases beyond a certain level,
in fact for Poisson arrivals it is unstable.

In this paper we consider the multiple-access collision channel with ternary feedback. An unlimited
number of users are allowed to transmit packets of a fixed length whose duration is taken as a time unit
and called slot. Stations can begin to transmit packets only at timesn ∈ {0, 1, 2, 3, . . . }. A slot is a time
interval [n, n + 1). The destination for the packet contents is a single common receiver. All users send
their packets through a common channel. Senders of different packets cannot interchange information.
Thus it is convenient to suppose that there are infinitely many non cooperating users and that the packet
arrivals can be modelled as a Poisson process in time with intensityλ.

When two or more users send a packet in the same time slot, these packets “collide” and the packet
information is lost, i.e., the receiver cannot determine the packet contents, and retransmission will be
necessary. However, all users, also those who were not transmitting can learn—from theternary feedback
just before time instantn + 1—the story of time slot[n, n + 1):

• feedback0 means an idle slot,

• feedback1 means successful transmission by a single user,

• feedback of the collision symbol∗ means that collision happened.

A conflict resolution protocol(or random multiple access algorithm) is a retransmission scheme for the
packets in a collision. Such a scheme must insure the eventual successful transmission of all these packets.
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A conflict resolution protocol has two components: the channel-access protocol (CAP) and the collision
resolution algorithm (CRA).

The CAP is a distributed algorithm that determines, for each transmitter, when a newly arrived packet
at that transmitter is sent for the first time. The simplest CAP, both conceptually and practically, is the
free-access protocolin which a transmitter sends a new packet in the first slot following its arrival. The
blocked-access protocolis that in which a transmitter sends a new packet in the first slot following the
resolution of all collisions that had occurred prior to the arrival of the packet.

The CRA can be defined as an algorithm (distributed in space and time) that organizes the retransmission
of the colliding packets in such a way that every packet is eventually transmitted successfully with finite
delay and all transmitters become aware of this fact.

The time span from the slot where an initial collision occurs up to and including the slot from which
all transmitters recognize that all packets involved in the above initial collision have been successfully
received is called collision resolution interval (CRI).

2 Tree Algorithm for Collision Resolution
Independently of each other, Capetanakis (1979); Tsybakov and Mihailov (1978) introduced the first CRA,
called tree algorithm, which resulted in stable conflict resolution protocol.

Let N denote the number of active transmitters, i.e., the multiplicity of the collision. According to the
tree algorithm, all active transmitters send the packets in the next slot. If there was no active transmit-
ter (N = 0) then the feedback is0 and the tree algorithm terminates. If there was exactly one active
transmitter (N = 1) then the feedback is1 and the transmission was successful, so, again, the algorithm
terminates. OtherwiseN ≥ 2, the feedback is the collision symbol∗. After this collision, all transmitters
involved flip a (non-biased) binary coin. Those flipping0 retransmit in the next slot, those flipping1
retransmit in the next slot after the collision (if any) among those flipping0 has been resolved.

The algorithm can be represented by a binary rooted search tree. Collisions correspond to intermediate
nodes, while empty slots and successful slots correspond to terminal nodes.

In order to analyze the tree algorithm, letX denote the number of packets sent in the first slot of the
CRI, and letY be the length (in slots) of the same CRI, i.e., the collision resolution time resolvingX
conflicts. Introduce the notation

LN = E{Y | X = N},

thenLN is the conditional expectation of the collision resolution time, given the multiplicity of the conflict
N .

Hajek (1980) indicated first thatLN/N does not converge, Massey (1981) bounded the oscillation of
LN/N , and then Mathys and Flajolet (1985) showed its asymptotic behavior in an implicit way. Janssen
and de Jong (2000) clarified the exact asymptotics ofLN/N :

LN

N
=

2
ln 2

+ A sin(2π log2 N + ϕ) + O(N−1),

where

A = 3.127 · 10−6, ϕ = 0.9826.

These imply that

2.8853869 ≤ lim inf
N→∞

LN

N
≤ lim sup

N→∞

LN

N
≤ 2.8853932.

Introduce the notation

L(z) =
∞∑

N=0

LN
zN

N !
e−z.

L(z) is called the Poisson transform of the sequence{LN} (cf. Szpankowski (2001)).
The asymptotic behavior ofLN is mostly investigated in the literature through its Poisson transform

L(z). The question naturally arises how small is the difference betweenLN andL(N) if N → ∞.
Mathys (1984) proved thatLN − L(N) = O(1). Next we extend it showing its oscillation.
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3 Oscillation of LN − L(N)
Theorem 1.

LN − L(N) ' A cos(2π log2 N + ϕ),

where
A = 1.29 · 10−4, ϕ = 0.698.

Proof. Based on Gulko and Kaplan (1985); Mathys and Flajolet (1985) the formula forLN can be written
in a nonrecursive way:L0 = L1 = 1, and forN ≥ 2,

LN = 1 + 2
∞∑

j=0

(
2j
(
1− (1− 2−j)N

)
−N(1− 2−j)N−1

)
. (1)

Let us calculate the Poisson transform ofLN (cf. Mathys and Flajolet (1985). By (1)

L(z) =
∞∑

N=0

LN
zN

N !
e−z

=
∞∑

N=0

zN

N !
e−z + 2

∞∑
N=2

∞∑
j=0

(
2j
(
1− (1− 2−j)N

)
−N(1− 2−j)N−1

)zN

N !
e−z

= 1 + 2
∞∑

j=0

(
2j(1− e−2−jz)− ze−2−jz

)
. (2)

By (1) and (2),

LN − L(N) = 1 + 2
∞∑

j=0

(
2j
(
1− (1− 2−j)N

)
−N(1− 2−j)N−1

)
− 1− 2

∞∑
j=0

(
2j(1− e−2−jN )−Ne−2−jN

)
= 2

∞∑
j=0

2j
(
e−2−jN − (1− 2−j)N

)
+ 2

∞∑
j=0

N
(
e−2−jN − (1− 2−j)N−1

)
= 2

∞∑
j=0

2je−2−jN

(
1−

(
e2−j(1− 2−j)

)N
)

+ 2
∞∑

j=0

N
(
e−2−j

e−2−j(N−1) − (1− 2−j)N−1
)

= : 2A + 2B.

For getting lower and upper bounds we use the following inequalities. If0 ≤ x ≤ 1, then

1 + x + x2

2 ≤ ex ≤ 1 + x + x2

2 + x3

2

1− x2

2 − x3

2 ≤ ex(1− x) ≤ 1− x2

2 − x4

4 ≤ 1− x2

2

1− x ≤ e−x ≤ 1− x + x2

2

and ifa ≥ b ≥ 0, then
(a− b)NbN−1 ≤ aN − bN ≤ (a− b)NaN−1.

Lower bound:

A ≥
∞∑

j=0

2je−2−jN

(
1−

(
1− 2−2j

2

)N
)

≥
∞∑

j=0

2je−2−jN 2−2j

2
N

(
1− 2−2j

2

)N−1

≥ 1
2

∞∑
j=0

2−jNe−2−jN

(
1− (N − 1)

2−2j

2

)

≥ 1
2

∞∑
j=0

2−jNe−2−jN

(
1−N

2−2j

2

)
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=
1
2

∞∑
j=0

2−jNe−2−jN − 1
4

∞∑
j=0

2−3jN2e−2−jN

=: I1 + I2,

and

B ≥
∞∑

j=0

N
(
(1− 2−j)e−2−j(N−1) − (1− 2−j)N−1

)
=

∞∑
j=0

Ne−2−j(N−1)

(
1−

(
e2−j

(1− 2−j)
)N−1

)
−

∞∑
j=0

2−jNe−2−j(N−1)

≥
∞∑

j=0

(N − 1)e−2−j(N−1)

(
1−

(
1− 2−2j

2

)N−1
)
−

∞∑
j=0

2−jNe−2−j(N−1)

≥ 1
2

∞∑
j=0

2−2j(N − 1)2e−2−j(N−1)

(
1− 2−2j

2

)N−1

−
∞∑

j=0

2−jNe−2−j(N−1)

≥ 1
2

∞∑
j=0

2−2j(N − 1)2e−2−j(N−1)

(
1− (N − 1)

2−2j

2

)
−

∞∑
j=0

2−jNe−2−j(N−1)

=
1
2

∞∑
j=0

2−2j(N − 1)2e−2−j(N−1) − 1
4

∞∑
j=0

2−4j(N − 1)3e−2−j(N−1)

−
∞∑

j=0

2−j(N − 1)e−2−j(N−1) −
∞∑

j=0

2−je−2−j(N−1)

=: J1 + J2 + J3 + J4.

Upper bound:

A ≤
∞∑

j=0

2je−2−jN

(
1−

(
1− 2−2j

2
− 2−3j

2

)N
)

≤
∞∑

j=0

2je−2−jN 2−2j

2
(1 + 2−j)N

=
1
2

∞∑
j=0

2−jNe−2−jN (1 + 2−j)

=
1
2

∞∑
j=0

2−jNe−2−jN +
1
2

∞∑
j=0

2−2jNe−2−jN

=: I1 + Ĩ2,

and

B ≤
∞∑

j=0

N

((
1− 2−j +

2−2j

2

)
e−2−j(N−1) − (1− 2−j)N−1

)

=
∞∑

j=0

N
(
e−2−j(N−1) − (1− 2−j)N−1

)
−

∞∑
j=0

2−jN

(
1− 2−j

2

)
e−2−j(N−1)

=
∞∑

j=0

Ne−2−j(N−1)

(
1−

(
e2−j

(1− 2−j)
)N−1

)
−

∞∑
j=0

2−jN

(
1− 2−j

2

)
e−2−j(N−1)

≤
∞∑

j=0

Ne−2−j(N−1)

(
1−

(
1− 2−2j

2
− 2−3j

2

)N−1
)
−

∞∑
j=0

2−j(N − 1)
(

1− 2−j

2

)
e−2−j(N−1)
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≤ 1
2

∞∑
j=0

2−2jN(N − 1)(1 + 2−j)e−2−j(N−1) −
∞∑

j=0

2−j(N − 1)
(

1− 2−j

2

)
e−2−j(N−1)

=
1
2

∞∑
j=0

2−2j(N − 1)2e−2−j(N−1) +
∞∑

j=0

2−2j(N − 1)e−2−j(N−1) +
1
2

∞∑
j=0

2−3j(N − 1)2e−2−j(N−1)

+
1
2

∞∑
j=0

2−3j(N − 1)e−2−j(N−1) −
∞∑

j=0

2−j(N − 1)e−2−j(N−1)

=: J1 + 2J̃2 + J̃3 + J̃4 + J3

It can be shown that ifN → ∞, thenI2, Ĩ2, J2, J4, J̃2, J̃3, J̃4 all tend to 0. Both from the upper and
the lower bounds the same terms remain, so we have derived the following asymptotical equation which
should be analyzed further.

LN − L(N) = 2(A + B) = 2(I1 + J1 + J3) + o(1)

It can be further simplified by showing that2I1 + J3 → 0 if N →∞. Let us lower bound it firstly,

2I1 + J3 =
∞∑

j=0

2−jN
(
e−2−j

− 1
)

e−2−j(N−1) +
∞∑

j=0

2−je−2−j(N−1)

≥
∞∑

j=0

2−jN
(
1− 2−j − 1

)
e−2−j(N−1) +

∞∑
j=0

2−je−2−j(N−1)

= −
∞∑

j=0

2−2jNe−2−j(N−1) +
∞∑

j=0

2−je−2−j(N−1),

and then upper bound it

2I1 + J3 ≤
∞∑

j=0

2−jN

(
1− 2−j +

2−2j

2
− 1
)

e−2−j(N−1) +
∞∑

j=0

2−je−2−j(N−1)

= −
∞∑

j=0

2−2jN

(
1− 2−j

2

)
e−2−j(N−1) +

∞∑
j=0

2−je−2−j(N−1).

Notice that both bounds tend to 0. That is whyLN − L(N) asymptotically equals to

LN − L(N) = 2J1 + J3 + o(1)

=
∞∑

j=0

2−2j(N − 1)2e−2−j(N−1) −
∞∑

j=0

2−j(N − 1)e−2−j(N−1) + o(1)

=: ∆(N − 1) + o(1)

The technique being used here is Mellin transform (cf. Szpankowski (2001)). Reader can find an ex-
cellent survey on Mellin transform in Flajolet et al. (1995), and some application of Mellin transform to
similar problems in Knuth (1973) pages 131–134, and Jacquet and Regnier (1986). The Mellin transform
of a complex valued functionf(x) defined over positive reals is

M[f(x); s] = F (s) =

∞∫
0

xs−1f(x) dx, a < <(s) < b,

where(a, b) is the fundamental (convergence) strip and<(·) (=(·)) denotes the real (imaginary) part of its
argument. The inversion formula is

f(x) =
1

2πi

c+i∞∫
c−i∞

x−sF (s) ds, a < c < b,
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wherec is an arbitrary real number from the fundamental strip(a, b).
One of the basic properties of the Mellin transform is that if

M[f(x); s] = F (s), a < <(s) < b,

then
M[αxβf(γx); s] = αγ−sF (s + β), a− β < <(s) < b− β. (3)

If we consider an elementary Mellin transform (cf. Szpankowski (2001) page 401):

M[e−x; s] = Γ(s), 0 < <(s) < ∞, (4)

then from (3) and (4) we have

M[x2e−x; s] = Γ(s + 2), −2 < <(s) < ∞, (5)

M[xe−x; s] = Γ(s + 1), −1 < <(s) < ∞, (6)

whereΓ(·) denotes the complete gamma function that is in Euler’s limit form (cf. Szpankowski (2001)
page 41):

Γ(s) = lim
n→∞

nsn!
s(s + 1)(s + 2) · · · (s + n)

. (7)

By applying Mellin transform technique the difference∆(N) can be expressed in terms of the gamma
function. Thus, with using (5) and (6) (while considering property (3)) we have

M[∆(N); s] =
∞∑

j=0

M[2−2jN2e−2−jN ; s]−
∞∑

j=0

M[2−jNe−2−jN ; s]

=
∞∑

j=0

(
2−j
)−s

Γ(s + 2)−
∞∑

j=0

(
2−j
)−s

Γ(s + 1)

=
Γ(s + 2)
1− 2s

− Γ(s + 1)
1− 2s

,

where−1 < <(s) < 0 (in the last step<(s) < 0 is needed for the convergence). Let us choosec := −1/2.
From the inversion formula it follows that

∆(N) =
1

2πi

c+i∞∫
c−i∞

N−s

(
Γ(s + 2)
1− 2s

− Γ(s + 1)
1− 2s

)
ds.

This line integral can be evaluated by using Cauchy’s residue theorem (cf. Figure 1). For this calculation
some residues are needed.11−2s has simple poles at the roots of equation2s = 1, so if s = 2kπi

ln 2

res
s=s0

1
1− 2s

= lim
s→s0

1
(1− 2s)′

= lim
s→s0

1
−2s ln 2

= − 1
ln 2

,

for all s0 ∈
{

2kπi
ln 2 , k ∈ Z

}
.

If we close the integration contour of the inversion integral in the right half plane (and negate the result
because of the negative direction of the integration contour), we get

∆(N) = − 1
2πi

(
2πi

∞∑
k=−∞

res
s= 2kπi

ln 2

N−s

(
Γ(s + 2)
1− 2s

− Γ(s + 1)
1− 2s

))
.

LN − L(N) = ∆(N − 1) + o(1)

' 1
ln 2

+
1

ln 2

∑
k 6=0

Γ
(
2 + 2kπi

ln 2

)
e−2kπi log2(N−1) −

 1
ln 2

+
1

ln 2

∑
k 6=0

Γ
(
1 + 2kπi

ln 2

)
e−2kπi log2(N−1)


=

1
ln 2

∑
k 6=0

(
Γ
(
2 + 2kπi

ln 2

)
− Γ

(
1 + 2kπi

ln 2

))
e−2kπi log2(N−1) (8)
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1 2−1−2−3

2π

ln 2

4π

ln 2

−
2π

ln 2

−
4π

ln 2

<(·)

=(·)

c = −1/2

Fig. 1: Poles ofM[∆(N); s] and the line integral for the inversion formula

As the gamma function decays exponentially fast over imaginary lines, forLN −L(N) a sharp approx-
imation can be given by (8) if we take into account just the first two terms (fork = ±1) of the sum, i.e.,
the approximation error is of order10−9.

LN − L(N) ' A cos(2π log2(N − 1) + ϕ),

where

A =
2

ln 2

((
<
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

)) )2

+
(
=
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

)) )2
)1/2

= 1.29 · 10−4,

and

ϕ = arctg
=
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

))
<
(
Γ
(
2 + 2πi

ln 2

)
− Γ

(
1 + 2πi

ln 2

)) = 0.698.

Thus
|LN − L(N)| . A = 1.29 · 10−4.

In order to finish the proof we have to show that ifN →∞

cos(2π log2 N + ϕ)− cos(2π log2(N − 1) + ϕ) = o(1).

It is easy since

cos(2π log2 N + ϕ)− cos(2π log2(N − 1) + ϕ) = (cos(2π log2 N)− cos(2π log2(N − 1))) cos ϕ (9)

− (sin(2π log2 N)− sin(2π log2(N − 1))) sin ϕ.(10)

Then the first term of (9) can be written as

cos(2π log2 N)− cos(2π log2(N − 1)) = −2 sin (π (log2 N + log2(N − 1))) sin (π (log2 N − log2(N − 1)))

= −2 sin (π log2(N(N − 1))) sin
(
π log2

(
1 + 1

N−1

))
.

As the functionlog2(·) is continuous in 1 and functionsin(·) is continuous in 0

lim
N→∞

sin
(
π log2

(
1 + 1

N−1

))
= 0,

that is why (9) iso(1). With similar reasoning it can be easily seen that (10) is alsoo(1). So, we have
proved that

LN − L(N) ' A cos(2π log2 N + ϕ).
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