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In the maximum constraint satisfaction problem (Max CSP), one is given a finite collection of (possibly weighted)
constraints on overlapping sets of variables, and the goal is to assign values from a given finite domain to the variables
so as to maximise the number (or the total weight) of satisfied constraints. This problem is NP-hard in general so
it is natural to study how restricting the allowed types of constraints affects the complexity of the problem. In this
paper, we show that any Max CSP problem with a finite set of allowed constraint types, which includes all constants
(i.e. constraints of the form x = a), is either solvable in polynomial time or is NP-complete. Moreover, we present
a simple description of all polynomial-time solvable cases of our problem. This description uses the well-known
combinatorial property of supermodularity.
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1 Introduction and Related Work

The constraint satisfaction problem (CSP) is a general framework in which a variety of combinatorial
problems, including propositional satisfiability and graph colourability, can be expressed in a natural
way [5, 8]. In this paper, we study the maximum constraint satisfaction problem (MAX CSP) which is
a natural optimization version of CSP. Informally speaking, in a CSP, one is given a finite collection of
constraints on overlapping sets of variables, and the goal is to assign values to the variables so as to satisfy
all constraints; in MAX CSP, the constraints are weighted, and the goal is to maximize the total weight of
satisfied constraints. Well-known examples of MAX CSP problems include MAX k-SAT and MAX CUT.

Constraint problems can be naturally parameterised by the types of constraints allowed in instances,
and the study of complexity of such parameterised problems is a very active research area [5, 8]. Two
classical results in the area are classifications of complexity for two important special cases: Schaefer’s
classification of Boolean CSPs (or SAT) (see [5]), when the set of possible values is {0, 1}, and Hell
and Nesetfil’s classification of GRAPH H-COLOURING (see [8]), when there is only one allowed (binary)
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constraint type which is specified by an undirected graph H. The general classification problem, both for
CSP and for MAX CSP, is open and known to be very difficult, though significant progress has recently
been made on it, largely due to algebraic techniques (e.g., [1, 2, 4, 9]).

Sub- and supermodularity and (anti-)Monge properties are well-known sources of tractability in com-
binatorial optimization [3, 7, 11]. Two forms of sub- and supermodular functions have been extensively
studied in the literature. One form is set functions, defined on subsets of a set [7], which plays a significant
role in many areas in combinatorics. The other form is functions defined on products of finite totally or-
dered sets (or chains) [3]. Such functions are usually represented in the form of arrays or matrices, which
are called (anti-)Monge arrays and matrices; they have been considered mostly in operations research [3].
A more general form of sub- and supermodularity is the one where functions are defined on general (alge-
braic) lattices. This form subsumes the previous two forms, but it is not so widely used in combinatorics.
Curiously, this form of sub- and supermodularity is popular in mathematical economics where it is used
to model games in which an optimal strategy can be found efficiently (e.g., supermodular games) [11].

This general form of supermodularity has been recently shown to be highly relevant in the study of
MAX CSP where it captures all currently known tractable cases [4, 9]. In this paper we continue inves-
tigation of MAX CSP via supermodularity and provide further evidence to the thesis that the (general)
property of supermodularity captures tractability in MAX CSP. We consider MAX CSP under a (very)
mild assumption that the set of allowed constraint types contains all constraints of the form z = a. The
only form of supermodularity applicable in this case is supermodularity on chains, and our main result
states that it precisely characterizes tractable MAX CSP problems (under the above assumption).

The main technical result of the paper contributes to a line of research in combinatorics which aims at
characterizing matrices avoiding given submatrices after certain transformations (see, e.g., [3, 6, 10]). For
example, a number of results on 0-1 matrices, which become Monge after some permutations of rows and
columns, is obtained in [10]. However, the case when the matrix is square and the rows and the columns
must be permuted by the same permutation is left there as an open question, with almost nothing known
about it (even now). We obtain several results clarifying the picture in this interesting case.

We conclude the paper with a discussion of the list H-colouring optimization problem for digraphs.

2 Supermodularity and Monge properties

Throughout the paper, let D be a finite set. A lattice on D is a partial order on D in which each pair
(a,b) of elements has a greatest lower bound a M b and a least upper bound a LI b. Any lattice can be
considered as an algebra with two binary operations M and LI. Let £ = (D, M, ) be a lattice on D, and
extend the notation to tuples: for a = (a1,...,a,), b = (b1,...,b,) in D", letaMb and a LI b denote
the tuples (aq Mby,...,a, Mby,) and (ag Uby,...,a, Ub,), respectively. A function f : D™ — Ris
called supermodular on L if

f(a)+ f(b) < f(amb)+ f(aUb) foralla,b € D™,

and f is called submodular on L if — f is supermodular on L.

Note that, in the case when D = {0, 1}, this definition precisely corresponds to the usual definitions
of sub- and supermodular set functions [7]. Totally ordered lattices are typically known as chains. In this
case, the operations M and LI are simply min and max. Clearly, every binary function f on a chain can
be considered as a matrix (by setting f(¢,j) = M;;), the total order being the order of indices. Matrices
obtained in this way from binary supermodular functions are known as anti-Monge (or a-Monge, for short)
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matrices [3]. In other words, a matrix M = (m,;) is a-Monge if m;s +m;; < m;j+m,s forall ¢ < r and
J < s. In the same way, n-ary supermodular functions correspond to anti-Monge n-dimensional arrays
(see Observation 6.1 in [3]). Monge matrices and arrays are obtained in the same way from submodular
functions. The structure of Monge matrices is described in Lemma 2.3 [3]. Using this result, it is easy
to show that a 0-1 matrix is a-Monge if and only if it can be obtained by the following simple procedure:
arbitrarily choose at most one top-left rectanglular area and at most one bottom-right rectanglular area in
the matrix; these areas may intersect. Assign 1 to all entries in these chosen areas (if there are any). After
that, if there are rows or columns which do not contain any assigned entries, then choose either some
(possibly none) of such rows or some (possibly none) of such columns, and assign 1 to all entries in the
chosen rows or columns. Finally, assign O to all unassigned entries.

If there is a permutation 7 that simultaneously permutes rows and columns of M so that the resulting
matrix is an a-Monge matrix, then the matrix M is called a permuted a-Monge matrix and the permutation
is called an a-Monge permutation for M. For a set B of indices of M, we write M[B] to denote the matrix
obtained from M by deleting all rows and columns not contained in B. Clearly, if, for some B, M|[B] is
not permuted a-Monge then neither is M. How small can the set B be chosen? Our main technical result
provides an answer to this question.

Theorem 2.1 If a square matrix M is not a permuted a-Monge matrix, then there exists a set of indices
B such that | B| < 4 and M |B] is not a permuted a-Monge matrix.

It can be easily shown that the above bound on |B| is tight. The proof of Theorem 2.1 is based on (an
elaborated version of) the algorithm from [6]. For our analysis of MAX CSP problems, we will actually
use the following non-trivial corollary from Theorem 2.1 and its proof.

Corollary 2.2 Suppose that My, ..., My, k > 1, are square 0-1 matrices of the same size such that no
permutation of indices is an a-Monge permutation for all of My, . . ., M. Then there exists a set of indices
B with |B| < 4 such that no permutation on B is an a-Monge permutation for all of M1[B], ..., My[B].

3 Constraint satisfaction problems

Let Rg"') denote the set of all m-ary predicates over D, that is, functions from D™ to {0,1}, and let
Rp =1~ jom). We will view the 0-1 values taken by predicates as integers, not as Boolean values.

m=1
A constraint over a set of variables V' = {x1,z3,...,2,} is an expression of the form f(x) where
fe Rgn) is called the constraint predicate; and x = (z;,, ..., x;, ) is called the constraint scope. The
constraint f is said to be satisfied on a tuple a = (a;,,...,a;, ) € D™ if f(a) = 1. Let F be a finite
subset of Rp. An instance of the problem CSP(F) is a pair (V,C) where V = {x1,...,2,} is a set of
variables and C' is a collection of constraints f1(x1), ..., fy(x4) over V, with f; € Fforall1 <i < gq.

The question is whether there is an assignment ¢ : V' — D which satisfies all constraints in C.

For a subset D’ C D, let ups denote the predicate such that up () = 1 if and only if z € D’. Let
Up = {up/ | D" € D} and Cp = {ugqy | d € D}. Note that predicates from Cp give rise to constraints
of the form = = d. The problems of the form CSP(F U Up) are known as conservative (or list) CSPs, and
their complexity has been completely classified in [1], while a complexity classification for the problems
of the form CSP(F U Cp) would imply a classification for all problems CSP(F) [2].

Let us now turn to optimization problems. An instance of the weighted MaX CSP(F) problem is a
tuple (V, C, p) where V and C are the same as for CSP(F), and p : C — Z7 is a function that assigns a
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(positive integral) weight p; to each constraint f;(x;). The goal is to maximize the total weight of satisfied
constraints, i.e, to maximize the function f : D" — Z* defined by f(z1,...,2,) = > 1ty pi - fi(Xi).

It is well-known [5] (and not difficult to see) that the case when D = {0,1} and F = {h} with
h(z,y) = 1 < x # y precisely corresponds to the well-known MAX CUT problem.

We say that a set 7 C Rp is supermodular on a chain on D if every predicate in F has this property.

Theorem 3.1 [5,4, 9] Let |D| < 3and F C Rp. Then either the problem MAX CSP(F) is equivalent to
a similar problem on a smaller domain obtained by removing some value from D, or F is supermodular
on some chain on D and then MAX CSP(F) is tractable, or, otherwise, MAX CSP(F) is NP-hard.

Note that, for | D| < 3, the only lattices on D are chains. Now let D be an arbitrary finite set. Another
natural case where chains are the only lattices that must be considered is the following one. It follows from
Lemma 1 [4] (and is easy to see) that every predicate from Cp (or from Up) is supermodular on a lattice
on D if and only if the lattice is a chain. Therefore, it probably is natural to expect that supermodularity on
chains will play a role in classifying problems of the form MAX CSP(F UCp) and MAX CSP(F UUp).
And, indeed, this turns out to be the case, as our main result shows.

Theorem 3.2 If F is supermodular on some chain on D, then the problems MAX CSP(F U Cp) and
MAX CSP(F UUp) are tractable. Otherwise, both problems are NP-hard.

Let us now outline the proof of Theorem 3.2. The tractability part immediately follows from Theorem
3 in [4]. To prove the hardness part, we use two reduction techniques: strict implementations and domain
restrictions. Strict implementations [5, 9] provide a way of constructing new predicates from a given set
of predicates. If g1,...,9s € F and g(y1,...,ym) is a predicate such that, for all y1, ..., y,,, we have
91, ym) + (a—1) = maxy > ;_, g:(y;) where o € Z and W is some set of variables appearing
in the y;’s, then we say that F strictly implements g. For D’ C D, let F|pr = {f|p' | f € F}.

Lemma 3.3 Suppose that F strictly implements a predicate g, and MAX CSP(F U {g}) is NP-hard.
Then MAX CSP(F) is NP-hard as well.

Lemma 3.4 Suppose that up: € F. If MAX CSP(F|p-) is NP-hard then so is MAX CSP(F).

Proof sketch: (of Theorem 3.2) First we use Lemma 3.3 to show that the problems MAX CSP(F UCp)
and MAX CSP(F UUp) are polynomial-time equivalent, thus we can consider only the latter problem.
Assume now that F is not supermodular on any chain on D. It follows from Lemma 6.3 [3] that an
n-ary (n > 2) function f is supermodular on a chain if and only if the following holds: every binary
function obtained from f by replacing any given n — 2 variables by any constants is supermodular on
the chain. By using this together with Lemma 3.3, we show that it is enough to consiuder the case when
F only contains binary predicates. By using Corollary 2.2 and the correspondence between a-Monge
matrices and binary supermodular predicates, we derive that there is a subset B C D, |B| < 4, such that
F|p is not supermodular on any chain on B. Moreover, it can be proved that there exist at most three
binary predicates in F such that these predicates are not simultaneously supermodular on any chain on
B. Consequently, we may henceforth assume that | 7| < 3 and, by Theorem 3.1 and Lemma 3.4, that the
predicates in F are over a domain B such that | B| = 4. This reduces the proof to a relatively small number
of cases. By using Theorem 3.1 and employing a number of symmetries, we reduce the number of cases
under consideration down to 54. We then show that each of these 54 possible sets F strictly implements
some predicates with an NP-hard MAX CSP problem. This can easily be done by a computer-assisted
case analysis, or, with more effort, combinatorially. d
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4 List H-colouring optimization

In this section, we consider the case when F consists of a single binary predicate h. This predicate
specifies a digraph H such that Vi = D and (u,v) is an arc in H if and only if h(u,v) = 1. Any
instance I = (V,C') of CSP({h}) can be associated with a digraph G; whose nodes are the variables in
V' and whose arcs are the scopes of constraints in C. It is not difficult to see that the question whether I is
satisfiable is equivalent to the question whether there is a homomorphism from G to H. Therefore, the
problem CSP({h}) is precisely the GRAPH H-COLOURING problem for the digraph H [8]. The problems
CSP({h} UlUp) and CSP({h} UCp) are equivalent to the LIST H-COLOURING and H-RETRACTION
problems, respectively. In the former problem, every vertex of an input digraph G gets a list of allowed
target vertices in H, and the question is whether GG has an H-colouring subject to the list constraints. The
latter problem is the same except that each list contains either one or all vertices of H. These problems
attract much attention in graph theory [8].

The problem MAX CSP({h} UUp) can then be viewed as follows: for every vertex v of an input
digraph G, there is a list L, C Vp along with a function p,, : L, — Z7 that indicates the ‘score’ which
a mapping Vg — Vi gets if it sends v to a certain vertex (if a mapping sends v to a vertex outside of L,
then this adds nothing to the ‘value’ of this mapping). Then the goal is to maximize the combined ‘value’
of such a mapping which is obtained by adding weights of preserved arcs and ‘scores’ from the lists. The
‘score’ functions p, arise as the result of the possible presence in C' of several weighted constraints of the
form up (v) for different D’ C D and the same v. Thus, Theorem 3.2 in the case when F = {h} presents
a complexity classification of list /{-colouring optimization problems. Digraphs H corresponding to the
tractable cases of this problem are the digraphs that have an a-Monge adjacency matrix (under some total
ordering on V). For a description of such matrices (and, hence, of such digraphs), see Section 2.
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