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Permutations with short monotone
subsequences

Dan Romik
Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA 94720-5070

We consider permutations of 1, 2, ..., n2 whose longest monotone subsequence is of length n and are therefore ex-
tremal for the Erdős-Szekeres theorem. Such permutations correspond via the Robinson-Schensted correspondence
to pairs of square n × n Young tableaux. We show that all the bumping sequences are constant and therefore these
permutations have a simple description in terms of the pair of square tableaux. We deduce a limit shape result for
the plot of values of the typical such permutation, which in particular implies that the first value taken by such a
permutation is with high probability (1 + o(1))n2/2.
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1 Introduction
In this note, we consider a class of permutations which have a certain extremality property with respect
to the length of their monotone subsequences. The well-known Erdős-Szekeres theorem states that
a permutation π = (π(1), π(2), ..., π(n2)) of the numbers 1, 2, ..., n2 must contain a monotone (either
increasing or decreasing) subsequence π(i1), π(i2), ..., π(in), i1 < i2 < ... < in. Our main object
of study will be those permutations which do not have any longer monotone subsequences than those
guaranteed to exist by this theorem.

Definition 1 A permutation π ∈ Sn2 is called an Extremal Erdős-Szekeres (EES) permutation if π
does not have a monotone subsequence of length n + 1. Denote by EESn the EES permutations in Sn2 .

The famous example showing sharpness of the Erdős-Szekeres theorem is the permutation

n, n− 1, . . . , 1, 2n, 2n− 1, . . . , n + 1, 3n, 3n− 1, . . . , 2n + 1, . . . , n2, n2 − 1, . . . , n2 − n + 1.

However, there are many more examples. Here is an EES permutation in S25:

13 10 20 15 3 22 23 2 9 25 17 21 14 7 8 1 4 5 16 11 24 19 18 6 12

It was observed by Knuth [1, Exer. 5.1.4.9] that the EES permutations in EESn are in bijection with pairs
of (standard) Young tableaux of square shape (n, n, ..., n) via the Robinson-Schensted correspondence,
and that, since the number of square Young tableaux can be computed using the hook formula of Frame-
Robinson-Thrall ([1, Th. 5.1.4.H]), this gives a formula for the number of EES permutations:

1365–8050 c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



58 Dan Romik

|EESn| =
(

(n2)!
1 · 22 · 33 · ... · nn · (n + 1)n−1 · (n + 2)n−2 · ... · (2n− 1)1

)2

.

Our first result is a formula that describes the structure of an EES permutation in terms of a pair of
square Young tableaux. This is a more precise description than that given by the Robinson-Schensted
correspondence, which in general is quite difficult to analyze. First, introduce some useful notation. If a
is a sequence of distinct numbers and u is one of the numbers, denote

lis(a) = the maximal length of an increasing subsequence in a,

lds(a) = the maximal length of a decreasing subsequence in a,

lisu(a) = the maximal length of an increasing subsequence in a containing u,

ldsu(a) = the maximal length of a decreasing subsequence in a containing u.

Theorem 2 Let Tn be the set of square n×n standard Young tableaux. There is a bijection from Tn×Tn

to EESn, defined as follows: to each pair of tableaux P = (pi,j)n
i,j=1, Q = (qi,j)n

i,j=1 corresponds the
permutation π ∈ EESn given by

π(qi,j) = pn+1−i,j , (1 ≤ i, j ≤ n). (1)

In the inverse direction, P and Q can be constructed from π as follows:

qi,j = the unique 1 ≤ k ≤ n2 such that ldsπ(k)(π(1), π(2), ..., π(k)) = i and (2)

lisπ(k)(π(1), π(2), ..., π(k)) = j.

pi,j = the unique 1 ≤ k ≤ n2 such that ldsπ−1(k)(π−1(1), ..., π−1(k)) = i and (3)
lisπ−1(k)(π−1(1), ..., π−1(k)) = j.

Next, we explore the properties of random EES permutations. For each n, let Pn be the uniform
probability measure on EESn. If π ∈ EESn, define the plot of π to be the set Aπ given by

Aπ = (i, π(i))1≤i≤n2 .

What does this set look like for a typical π ∈ Sn? Figure 1(a) shows Aπ for a randomly chosen
π ∈ EES100. For comparison, Figure 1(b) shows Aπ for a permutation π chosen at random from all the
permutations in S10000. Clearly the points in Aπ for a random EES permutation cluster inside a certain
subset of the square [1, 10000] × [1, 10000]. The phenomenon is explained by the following limit shape
theorem, and is illustrated in Figure 2.

Theorem 3 Define the set

Z =
{

(x, y) ∈ [−1, 1]× [−1, 1] : (x2 − y2)2 + 2(x2 + y2) ≤ 3
}

.

Then: (i) For any open set U containing Z ,

Pn

[
π ∈ EESn :

(
2
n2

Aπ − (1, 1)
)
⊂ U

]
−−−−→
n→∞

1.
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Fig. 1: A uniform random EES permutation and a uniform random permutation of 1, 2, ..., 10000.

(ii) For any open set U ⊂ Z ,

Pn

[
π ∈ EESn :

(
2
n2

Aπ − (1, 1)
)
∩ U 6= ∅

]
−−−−→
n→∞

1.

In particular, this implies the somewhat surprising fact that for large n, almost all EES permutations
π ∈ EESn satisfy π(1) ≈ n2/2.

2 Proof of Theorem 2
In this section, we prove Theorem 2. Our proof uses the Robinson-Schensted correspondence. Al-
though the bijection between EES permutations and pairs of square Young tableaux is a special case
of the Robinson-Schensted correspondence, this special case is much simpler than the general case. For
instance, the worst-case computational complexity of (1) is O(n2), and the worst-case complexity of (2)
and (3) is O(n2 log n); compare this with the average-case complexity of θ(m3/2 log m) of the Robinson-
Schensted correspondence applied to a general permutation of m elements (here m = n2), see [3].

We assume that the reader is familiar with the definition and basic properties of the Robinson-Schensted
correspondence; for background consult [1, section 5.1.4]. Recall that the Robinson-Schensted correspon-
dence attaches to each permutation π ∈ Sm two standard Young tableaux P and Q whose shape is the
same Young diagram λ of size m. The length of the first row λ1 of λ is equal to lis(π), and the length of
the first column λ′1 of λ is equal to lds(π). In particular, if π ∈ EESn, then λ is a Young diagram of size
n2 whose first row and column are both of length n; the only such diagram is the square diagram of shape
(n, n, ..., n), and this proves Knuth’s observation mentioned in the introduction.

Our proof of (1) now relies on the following lemma.
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Fig. 2: The limiting shape of the plot of a random EES permutation. The boundary is the quartic curve
(x2 − y2)2 + 2(x2 + y2) = 3.

Lemma 4 When the Robinson-Schensted correspondence is applied to an EES permutation π ∈ EESn

to compute the tableaux P,Q, all the bumping sequences are constant.

Proof We prove the obviously equivalent statement that in the application of the inverse Robinson-
Schensted correspondence to two square n × n Young tableaux P and Q, all the bumping sequences are
constant. Recall that the inverse Robinson-Schensted correspondence consists of n2 deletion operations,
where at each step the corner element where the maximal entry in Q is located is deleted from the shape
of P and Q, and P is modified by bumping the entry of P that was in the deleted corner up to the next
higher row, then repeatedly bumping up an element from each row until reaching the top row.

The proof will be by induction on k, the number of deletion operations performed. For a given k ≥ 1,
let λ be the shape of the tableaux P and Q after k − 1 deletion operations (so λ is the shape of the
subtableau of the original Q consisting of all entries≤ n2−k +1). Denote by P = (pi.j)n

i,j=1 the entries
of the original tableau P , and denote by P̂ = (p̂i,j)i,j the entries of the tableau P after k − 1 deletion
operations. Assume that the k-th corner element to be deleted is at location (i0, j0). A little reflection will
convince the reader that the k-th bumping sequence will be constant if and only if for all 2 ≤ i ≤ i0 we
will have that p̂i,j0 < p̂i−1,j0+1 (where we take p̂i−1,j0+1 = ∞ if location (i− 1, j0 + 1) lies outside λ).

By the induction hypothesis, all the bumping sequences before time k were constant; another way to
express this is via the equation

p̂i,j = pi+n−λ′(j),j , (1 ≤ j ≤ n, 1 ≤ i ≤ λ′(j)),

where λ′(j) is the length of the j-th column of λ, which simply says that the j-th row of P̂ contains the
λ′(j) bottom elements of the j-th row of P , in the same order. So we have

p̂i,j0 = pi+n−λ′(j0),j0 , p̂i−1,j0+1 = pi−1+n−λ′(j0+1),j0+1.

But (i0, j0) is a corner element of λ, so λ′(j0) = i0 > λ′(j0 + 1). This implies that i + n − λ′(j0) ≤
i− 1 + n− λ′(j0 + 1), and therefore p̂i,j0 < p̂i−1,j0+1, since P is a Young tableau. 2
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Lemma 4 easily implies (1). At the k-th deletion step, if the corner cell being deleted is at location
(i0, j0) (so λ′(j0) = i0), then qi0,j0 = n2 − k + 1, and the element bumped out of the first row will be
p̂1,j0 = pn+1−λ′(j0),j0 . As a consequence we get π(n2 − k + 1) = π(qi0,j0) = pn+1−i0,j0 .

To conclude the proof of Theorem 2, we now prove (2) and (3). Clearly it is enough to prove (2), since
replacing π by π−1 has the effect of switching P and Q in the output of the Robinson-Schensted corre-
spondence. Note that qi,j = k if and only if (i, j) was the corner cell that was added to the tableau P at
the k-th insertion step. Because of the properties of the Robinson-Schensted correspondence (specifically,
[1, Th. 5.1.4.D(b)] and [1, Exer. 5.1.4.2]), this implies in particular that

ldsπ(k)(π(1), π(2), ..., π(k)) ≥ i, lisπ(k)(π(1), π(2), ..., π(k)) ≥ j. (4)

Now, it is easy to see that{(
ldsπ(k)

(
π(1), π(2), ..., π(k)

)
, lisπ(k)

(
π(1), π(2), ..., π(k)

))
: 1 ≤ k ≤ n2

}
is a set of distinct points in Z2 - this is the fact used in the well-known proof of the Erdős-Szekeres theorem
using the pigeon-hole principle (and this fact also justifies the use of the word “unique” in (2) and (3)).
However, since π is an EES, all these n2 points lie in [1, n]× [1, n]. So in fact the inequalities in (4) must
be equalities, and (2) holds. 2

3 Proof of Theorem 3
We now prove Theorem 3. First, we recall the limit shape result for random square Young tableaux
proved in [2]. For each n ∈ N, let µn denote the uniform probability measure on Tn, the set of n × n
square Young tableaux. Pittel and Romik [2] proved that there is an (explicitly describable) function
L : [0, 1] × [0, 1] → [0, 1] that describes the limiting surface of the typical square Young tableau (see
Figure 3). More precisely:

Theorem 5 [2] For all ε > 0,

µn

[
T = (ti,j)n

i,j=1 ∈ Tn : max
1≤i,j≤n

∣∣∣ 1
n2

ti,j − L(i/n, j/n)
∣∣∣ > ε

]
−−−−→
n→∞

0.

The only properties of the limit surface L that we will need are that it is an increasing function of either
coordinate, and that its values on the boundary of the square are given by

L(t, 0) = L(0, t) =
1−

√
1− t2

2
, L(t, 1) = L(1, t) =

1 +
√

2t− t2

2
. (5)

Let π be a uniform random permutation in EESn. By Theorem 2, its plot can be described in terms of the
tableaux P and Q (which are independent uniform random n× n square tableaux) by

Aπ =
{(

qi,j , pn+1−i,j

)
: 1 ≤ i, j ≤ n

}
.

By Theorem 5, each point n−2(qi,j , pn+1−i,j) is with high probability (as n → ∞) uniformly close to
the point (L(u, v), L(1−u, v)), where u = i/n, v = j/n. It follows that Theorem 3 is true with the limit
shape set

Z ′ =
{(

2L(u, v)− 1, 2L(1− u, v)− 1) : 0 ≤ u, v ≤ 1
}

.
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(a) 3D plot of a random tableau
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(b) The limit surface L(x, y)

Fig. 3: A random 50× 50 square tableau and the limit surface

By (5), it follows that the mapping (u, v) → (2L(u, v)− 1, 2L(1− u, v)− 1) maps the boundary of the
square [0, 1]× [0, 1] into the four curves described parametrically by(

−
√

1− t2,−
√

2t− t2
)

0≤t≤1
,

(
−

√
1− t2,

√
2t− t2

)
0≤t≤1

,

(√
2t− t2,

√
1− t2

)
0≤t≤1

,
(√

2t− t2,−
√

1− t2
)

0≤t≤1
.

Setting x = ±
√

2t− t2, y = ±
√

1− t2, it is easy to verify that

(x2 − y2)2 + 2(x2 + y2) = 3,

so these curves are the parametrizations of the boundary of the set Z . It is also easy to check that the
interior of the square is mapped to the interior of Z , so Z ′ = Z . 2
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