On the $\frac{3}{4}$ -Conjecture for Fix-Free Codes

Christian Deppe and Holger Schnettler

Fakultät für Mathematik Universität Bielefeld Postfach 100131 D-33501 Bielefeld Germany

In this paper we concern ourself with the question, whether there exists a fix-free code for a given sequence of codeword lengths. We focus mostly on results which shows the $\frac{3}{4}$ -conjecture for special kinds of lengths sequences.

Keywords: Fix-free Codes, Kraft inequality, $\frac{3}{4}$ -Conjecture

Contents

1	Introduction	111
2	The $\frac{3}{4}$ -conjecture for q -ary fix-free codes	112
3	Fix-free codes obtained from π -systems	112
4	The $\frac{3}{4}$ -conjecture for binary fix-free codes	114

1 Introduction

A *fix-free code* is a code, which is prefix-free and suffix-free, i.e. any codeword of a fix-free code is neither a prefix, nor a suffix of another codeword. Fix-free codes were first introduced by Schützenberg (4) and Gilbert and Moore (5), where they were called *never-self-synchronizing* codes. Ahlswede, Balkenhol and Khachatrian propose in (6) the conjecture that a Kraftsum of a lengths sequence smaller than or equal to $\frac{3}{4}$, imply the existence of a fix-free code with codeword lengths of the sequence. This is known as the $\frac{3}{4}$ -conjecture for fix-free codes. Harada and Kobayashi generalized in (7) all results of (6) for the case of *q*-ary alphabets and infinite codes.

Over the last years many attempts were done to prove the $\frac{3}{4}$ -conjecture either for the general case of a q-ary alphabet or at least for the special case of a binary alphabet. In this paper we focus mostly on results which shows the $\frac{3}{4}$ -conjecture for special kinds of lengths sequences.

The $\frac{3}{4}$ -conjecture holds for finite sequences, if the numbers of codewords on each level is bounded by a term which depends on q and the smallest codeword length which occurs in the lengths sequence. This

1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

theorem was first shown by Kukorelly and Zeger in (10) for the binary case. We generalize this theorem to q-ary alphabets.

If the Kraftsum of the first level which occurs in a lengths sequence together with the Kraftsum of the following level is bigger than $\frac{1}{2}$, then from Yekanins theorem (8) follows, that the $\frac{3}{4}$ -conjecture holds. Yekanins theorem is only for the binary case. We give a generalization of the theorem. For the proof of the theorem and its generalization, we introduce π -systems, which are special kinds of fix-free codes with Kraftsum $\left\lceil \frac{q}{2} \right\rceil q^{-1}$. We show, that π -systems with only two neighbouring levels and $L \cdot \left\lceil \frac{q}{2} \right\rceil$ codewords on the first level exist, if and only if there exists a $\left\lceil \frac{q}{2} \right\rceil$ -regular subgraph of the directed de Bruijn graph $\mathcal{B}_q(n)$ with n edges over a q-ary alphabet with L vertices. Furthermore we show that arbitrary one level π -systems exist. Since there exist cycles of arbitrary length in $\mathcal{B}_2(n)$, we obtain Yekhanin's original theorem with the π -system extension theorem. However, in the generalization of Yekhanin's theorem to the q-ary case, an extra condition for the existence of $\left\lceil \frac{q}{2} \right\rceil$ -regular subgraph in $\mathcal{B}_q(n)$ occurs.

The last part is about the binary version of the $\frac{3}{4}$ -conjecture. We obtain some new results for the binary case of the $\frac{3}{4}$ -conjecture with the help of quaternary fix-free codes.

2 The $\frac{3}{4}$ -conjecture for q-ary fix-free codes

This section is about the cases, where the $\frac{3}{4}$ -conjecture can be shown for an arbitrary finite alphabet \mathcal{A} . We give a generalization of a theorem from Kukorelly and Zeger (10), which was shown for the binary case originally. This theorem shows, that the $\frac{3}{4}$ -conjecture holds for finite codes, if the number of codewords on each level, expect the maximal level, is bounded by a term which depends on the minimal level.

We write a sequence $(\alpha_l)_{l \in \mathbb{N}}$ of nonnegative integers fits to a code $\mathcal{C} \subseteq \mathcal{A}^*$ if $|\mathcal{C} \cap \mathcal{A}^l| = \alpha_l$ for all $l \in \mathbb{N}$.

Theorem 1 Let $|\mathcal{A}| = q \ge 2$, $(\alpha_l)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=l_{min}}^{l_{max}} \alpha_l q^{-l} \le \frac{3}{4}$ and

$$\begin{split} l_{min} &:= \min\{l \mid \alpha_l \ge 0\}, \\ l_{max} &:= \sup\{l \mid \alpha_l \ge \} \le \infty. \text{ If } l_{min} \ge 2, \ l_{max} < \infty \text{ and } \alpha_l \le q^{l_{min}-2} \lfloor \frac{q}{2} \rfloor^2 \lceil \frac{q}{2} \rceil^{l-l_{min}} \text{ for all } l \neq l_{max}, \\ \text{then there exists a fix-free Code } \mathcal{C} \subseteq \mathcal{A}^* \text{ which fits to } (\alpha_l)_{l \in \mathbb{N}}. \end{split}$$

3 Fix-free codes obtained from π -systems

We give a generalization of a theorem of Yekhanin (8), which shows that the $\frac{3}{4}$ -conjecture holds for binary codes if the Kraftsum of the first level which occurs in the code together with it neighboring level is bigger than $\frac{1}{2}$.

For an arbitrary set $C \subseteq A^*$ the *prefix-, suffix- and bifix-shadow* of C on the *n*-th level are defined as:

$$\begin{array}{llll} \Delta_P^n(\mathcal{C}) & := & \bigcup_{l=0}^n (\mathcal{C} \cap \mathcal{A}^l) \mathcal{A}^{n-l} & \subseteq & \mathcal{A}^n \,, \\ \Delta_S^n(\mathcal{C}) & := & \bigcup_{l=0}^n \mathcal{A}^{n-l} (\mathcal{C} \cap \mathcal{A}^l) & \subseteq & \mathcal{A}^n \,, \\ \Delta_B^n(\mathcal{C}) & := & \Delta_P^n(\mathcal{C}) \cup \Delta_S^n(\mathcal{C}) & \subseteq & \mathcal{A}^n \,. \end{array}$$

For proving the theorem, Yekhanin introduced in (8) a special kind of fix-free codes, which he called π -systems:

Definition 1 Let
$$|\mathcal{A}| = 2$$
, we say $\mathcal{D} \subseteq \bigcup_{l=1}^{n} \mathcal{A}^{l}$ is a π_{2} -system if \mathcal{D} is fix-free with Kraftsum $\frac{1}{2}$ and

$$|\Delta_S^n(\mathcal{D})| = |\Delta_P^n(\mathcal{D})| = |\mathcal{A}^{-1}\Delta_P^n(\mathcal{D})| = |\Delta_S^n(\mathcal{D})\mathcal{A}^{-1}|$$
(1)

To prove a generalization for arbitrary finite alphabets, we give a more general definition of π -systems.

Definition 2

Let $|\mathcal{A}| = q \ge 2$, $1 \le k \le q$ and $n \in \mathbb{N}$. We call a set $\mathcal{D} \subseteq \bigcup_{l=1}^{n} \mathcal{A}^{l}$ a $\pi_{q}(n; k)$ -system if \mathcal{D} is fix-free, and there exists a partition of \mathcal{D} into k sets $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ for which the following three equivalent properties holds.

(1): For all $1 \le i \le k$ holds:

$$q^{n-1} = |\Delta_P^n(\mathcal{D}_i)| = |\mathcal{A}^{-1}\Delta_P^n(\mathcal{D}_i)|$$
$$= |\Delta_S^n(\mathcal{D}_i)| = |\Delta_S^n(\mathcal{D}_i)\mathcal{A}^{-1}|$$

(2): $S(\mathcal{D}) = \frac{k}{q}$ and for all i with $1 \le i \le k$ holds:

$$|\Delta_P^n(\mathcal{D}_i)| = |\mathcal{A}^{-1}\Delta_P^n(\mathcal{D}_i)|$$
 and $|\Delta_S^n(\mathcal{D}_i)| = |\Delta_S^n(\mathcal{D}_i)\mathcal{A}^{-1}|$

(3): For all $1 \leq i \leq k$ the set $\mathcal{A}^{-1}\mathcal{D}_i$ is maximal prefix-free, $\mathcal{D}_i\mathcal{A}^{-1}$ is maximal suffix-free and $|\mathcal{A}^{-1}\mathcal{D}_i| = |\mathcal{D}_i\mathcal{A}^{-1}| = |\mathcal{D}_i|$.

The sets $\mathcal{D}_1, \ldots, \mathcal{D}_k$ *are called a* π -partition of \mathcal{D}

For $\alpha_1, \ldots, \alpha_n \in \mathbb{N}$ we call a $\pi_q(n; k)$ -system \mathcal{D} a $\pi_q(\alpha_1, \ldots, \alpha_n; k)$ -system if $|\mathcal{D} \cap \mathcal{A}^l| = \alpha_l$ for all $1 \leq l \leq n$.

(1)-(3) in the definition are all equivalent.

For $1 \le k < q$ let

$$\gamma_k := \begin{cases} \frac{1}{2} + \frac{k}{2q} & \text{for } 1 \le k \le \left\lfloor \frac{q}{2} \right\rfloor \\ \left(\frac{q-k}{q} \right)^2 + \frac{k}{q} & \text{for } \left\lfloor \frac{q}{2} \right\rfloor < k < q \,. \end{cases}$$

Especially we have $\gamma_{\lceil \frac{q}{2} \rceil} \geq \frac{3}{4}$. We obtain the following theorem for fix-free extensions of π -systems: **Theorem 2** (π -system extension Theorem) Let $|\mathcal{A}| = q \geq 2$, $1 \leq k < q$, $(\alpha_l)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_l q^{-l} \leq \gamma_k$ and $n \in \mathbb{N}$, $1 \leq \beta \leq \alpha_n$ such that $\beta q^{-n} + \sum_{l=1}^{n-1} \alpha_l q^{-l} = \frac{k}{q}$. Then for every $\pi_q(\alpha_1, \ldots, \alpha_{n-1}, \beta; k)$ -system there exists a fix-free-extension which fits to $(\alpha_l)_{l \in \mathbb{N}}$. Let $\mathcal{A} = \{0, \dots, q-1\}$. The directed de Bruijn graph $\mathcal{B}_q(n)$ has \mathcal{A}^n as its vertex set and for every $a, b \in \mathcal{A}, w \in \mathcal{A}^{n-1}$ there is an edge $aw \to wb$ in $\mathcal{B}_q(n)$ which can be labelled by the word $awb \in \mathcal{A}^{n+1}$.

By examining the existence of $\pi_q(n+1;k)$ -systems with codewords on the *n*-th and n+1-th level but no other codeword lengths, we obtain that such a system exists if and only if there exists a *k*-regular subgraph in $\mathcal{B}_q(n-1)$ with the number of edges equal to the number of codewords of length *n*. Especially for such a $\pi_q(n+1;k)$ system the codewords of the *n*-th level are the edges of a *k*-regular subgraph of $\mathcal{B}_q(n-1)$ and the codewords of the n+1-level are given by $\bigcup_{i=1}^k \bigcup_{a \in \mathcal{A}} a\mathcal{V}^c\varphi_i(a)$, where \mathcal{V}^c is the complement of the vertex set of the *k*-regular subgraph of $\mathcal{B}_q(n-1)$ and $\varphi_1, \ldots, \varphi_k$ are permutations of \mathcal{A} with the property $\varphi_i(a) \neq \varphi_j(a)$ for $i \neq j, a \in \mathcal{A}$. Furthermore the codewords of a one-level $\pi_q(n)$ -system are the edges of a *k*-factor of $\mathcal{B}_q(n-1)$ and vice versa. Thus we obtain with Theorem 2 the following generalization of Yekhanin's Theorem for arbitrary finite alphabets:

Theorem 3 Let $|\mathcal{A}| = q \geq 2, 1 \leq k < q$ and $(\alpha_l)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_l q^{-l} \leq \gamma_k$.

- (i) If $\frac{\alpha_n}{q^n} + \frac{\alpha_{n+1}}{q^{n+1}} \ge \frac{k}{q}$, $\alpha_n = kL$ for some $1 \le L < q^{n-1}$ and there exists a k-regular subgraph in $\mathcal{B}_q(n-1)$ with L vertices, then there exists a fix-free code which fits to $(\alpha_l)_{l \in \mathbb{N}}$.
- (ii) If $\frac{\alpha_n}{a^n} \geq \frac{k}{a}$ then there exists a fix-free code which fits to $(\alpha_l)_{l \in \mathbb{N}}$.

Since Lempel has shown in (11), that there are cycles of arbitrary length in $\mathcal{B}_q(n)$, we obtain for the binary case Yekhanin's original theorem.

By examining π_q -systems with more than two levels, we obtain with Theorem 2.

Theorem 4 Let $|\mathcal{A}| = q \ge 2, 1 \le d < q, k \le \min\{d, q - d\}$ and $(\alpha_l)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_l q^{-l} \le \gamma_k$.

- (i) Let $n \ge 2$. If $\alpha_1 = 0$, $\alpha_l = kd(q-d)^{l-2}$ for $2 \le l < n$ and $\alpha_n \ge kq(q-d)^{n-2}$ then there exists a fix-free code which fits to $(\alpha_l)_{l \in \mathbb{N}}$.
- (ii) Let $n \geq 3$. If $\alpha_1 = \alpha_2 = 0$, $\alpha_l = kd(q-d)^{l-2} + k(q-d)d^{l-2}$ for $3 \leq l < n$ and $\alpha_n \geq kq(q-d)^{n-2} + kqd^{n-2}$ then there exists a fix-free code which fits to $(\alpha_l)_{l \in \mathbb{N}}$.

4 The $\frac{3}{4}$ -conjecture for binary fix-free codes

In this section we examine the $\frac{3}{4}$ -conjecture for the special case $|\mathcal{A}| = 2$. If we identify quaternary fix-free codes with binary fix-free codes in the natural way we obtain from the theorems above that the following statements hold for the binary case:

Theorem 5 Let $\mathcal{A} := \{0, 1\}$ and $(\alpha_l)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_l \left(\frac{1}{2}\right)^l \leq \frac{3}{4}$.

(i) If there exists an $n \ge 2$ such that $\alpha_2 = \alpha_{2l+1} = 0$ for all $l \in \mathbb{N}_0$, $\alpha_{2l} = 2^l$ for all $2 \le l < n$, $\alpha_{2n} \ge 2^{n+1}$ and $\alpha_{2l} \in \mathbb{N}_0$ for all l > n, then there exists a fix-free code $\mathcal{C} \subseteq \mathcal{A}^+$ which fits to $(\alpha_l)_{l \in \mathbb{N}}$.

- (ii) If there exists an $n \ge 3$ such that $\alpha_2 = \alpha_4 = \alpha_{2l+1} = 0$ for all $l \in \mathbb{N}_0$, $\alpha_{2l} = 2^{l+1}$ for all $2 \le l < n$, $\alpha_{2n} \ge 2^{n+2}$ and $\alpha_{2l} \in \mathbb{N}_0$ for all l > n, then there exists a fix-free code $C \subseteq A^+$ which fits to $(\alpha_l)_{l \in \mathbb{N}}$.
- (iii) If there exists an $n \in \mathbb{N}$ such that $\alpha_2 = \alpha_4 = \ldots = \alpha_{2n-2} = \alpha_{2l+1} = 0$ for all $l \in \mathbb{N}_0$, α_{2n} is even, $\frac{\alpha_{2n}}{2^{2n}} + \frac{\alpha_{2n+2}}{2^{2n+2}} \ge \frac{1}{2}$ and there exists a 2-regular subgraph of $\mathcal{B}_4(n-1)$ with $\frac{\alpha_{2n}}{2}$ vertices, then there exists a fix-free code $\mathcal{C} \subseteq \mathcal{A}^+$ which fits to $(\alpha_l)_{l \in \mathbb{N}}$.
- (iv) Let $l_{min} := \min\{l \mid \alpha_l \neq 0\}$ and $l_{max} := \sup\{l \mid \alpha_l \neq 0\}$. If $l_{max} < \infty$, $4 \leq l_{min}$ is even, $\alpha_{2l+1} = 0$ for all $l \in \mathbb{N}_0$ and $\alpha_{2l} \leq 2^{\frac{l_{min}}{2} - 2 + l}$ for all $2l \neq l_{max}$, then there exists a fix-free code $C \subseteq \mathcal{A}^+$ which fits to $(\alpha_l)_{l \in \mathbb{N}}$.

References

- [1] L.G. Kraft, A device for quantizing, grouping and coding amplitude modulated pulses, Master's thesis, Dept. of Electrical Engineering, M.I.T., Cambridge, Mass., 1949.
- [2] B. McMillan, Two inequalities implied by unique decipherability, IRE Trans. Inform. Theory, vol. IT-2, pp. 115-116, (1956).
- [3] D. Huffman, A method for construction of minimum redundancy codes, Proc. of the IRE, vol. 40, pp. 1098-1101, (1952).
- [4] M. P. Schützenberg, On an application of semigroup methods to some problems in coding, IRE. Trans. Inform. Theory, vol. IT-2, pp 47-60, (1956).
- [5] E. N. Gilbert and E. F. Moore, Variable-length binary encodings, Bell Syst. Tech. J., vol. 38, pp. 933-968, July (1959).
- [6] R. Ahlswede, B.Balkenhol and L.Khachatrian, Some Properties of Fix-Free Codes, Proc. 1st Int. Sem. on Coding Theory and Combinatorics, Thahkadzor, Armenia, pp. 20-33, (1996).
- [7] K. Harada and K. Kobayashi, A Note on the Fix-Free Property, IEICE Trans. Fundamentals, vol. E82-A, no 10, pp.2121-2128, October (1999).
- [8] S. Yekhanin, Sufficient Conditions of Existence of Fix-Free Codes, Proc. Int. Symp. Information Theory, Washington, D.C., p.284, June (2001).
- [9] S. Yekhanin, Improved upper bound for the redundancy of fix-free codes, IEEE Tran. Inform. Theory., vol. 50, Issue 11, pp. 2815-2818, Nov. (2004)
- [10] Z. Kukorelly and K. Zeger, Sufficient Condition for Existence of Binary Fix-Free Codes, submitted to IEEE Trans. Inform. Theory. October 15, (2003).
- [11] A. Lempel, *m*-Ary closed sequences, J. Cobin. Theorey 10, pp. 253-258, (1971).
- [12] S.W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, (1982).

Christian Deppe and Holger Schnettler