On the $\frac{3}{4}$-Conjecture for Fix-Free Codes

Christian Deppe and Holger Schnettler

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
D-33501 Bielefeld
Germany

In this paper we concern ourself with the question, whether there exists a fix-free code for a given sequence of codeword lengths. We focus mostly on results which shows the $\frac{3}{4}$-conjecture for special kinds of lengths sequences.

Keywords: Fix-free Codes, Kraft inequality, $\frac{3}{4}$-Conjecture

Contents

1 Introduction 111
2 The $\frac{3}{4}$-conjecture for q-ary fix-free codes 112
3 Fix-free codes obtained from π-systems 112
4 The $\frac{3}{4}$-conjecture for binary fix-free codes 114

1 Introduction

A fix-free code is a code, which is prefix-free and suffix-free, i.e. any codeword of a fix-free code is neither a prefix, nor a suffix of another codeword. Fix-free codes were first introduced by Schützenberg (4) and Gilbert and Moore (5), where they were called never-self-synchronizing codes. Ahlswede, Balkenhol and Khachatrian propose in (6) the conjecture that a Kraftsum of a lengths sequence smaller than or equal to $\frac{3}{4}$, imply the existence of a fix-free code with codeword lengths of the sequence. This is known as the $\frac{3}{4}$-conjecture for fix-free codes. Harada and Kobayashi generalized in (7) all results of (6) for the case of q-ary alphabets and infinite codes.

Over the last years many attempts were done to prove the $\frac{3}{4}$-conjecture either for the general case of a q-ary alphabet or at least for the special case of a binary alphabet. In this paper we focus mostly on results which shows the $\frac{3}{4}$-conjecture for special kinds of lengths sequences.

The $\frac{3}{4}$-conjecture holds for finite sequences, if the numbers of codewords on each level is bounded by a term which depends on q and the smallest codeword length which occurs in the lengths sequence. This

[^0]theorem was first shown by Kukorelly and Zeger in (10) for the binary case. We generalize this theorem to q-ary alphabets.

If the Kraftsum of the first level which occurs in a lengths sequence together with the Kraftsum of the following level is bigger than $\frac{1}{2}$, then from Yekanins theorem (8) follows, that the $\frac{3}{4}$-conjecture holds. Yekanins theorem is only for the binary case. We give a generalization of the theorem. For the proof of the theorem and its generalization, we introduce π-systems, which are special kinds of fix-free codes with Kraftsum $\left\lceil\frac{q}{2}\right\rceil q^{-1}$. We show, that π-systems with only two neighbouring levels and $L \cdot\left\lceil\frac{q}{2}\right\rceil$ codewords on the first level exist, if and only if there exists a $\left\lceil\frac{q}{2}\right\rceil$-regular subgraph of the directed de Bruijn graph $\mathcal{B}_{q}(n)$ with n edges over a q-ary alphabet with L vertices. Furthermore we show that arbitrary one level π systems exist. Since there exist cycles of arbitrary length in $\mathcal{B}_{2}(n)$, we obtain Yekhanin's original theorem with the π-system extension theorem. However, in the generalization of Yekhanin's theorem to the q-ary case, an extra condition for the existence of $\left\lceil\frac{q}{2}\right\rceil$-regular subgraph in $\mathcal{B}_{q}(n)$ occurs.

The last part is about the binary version of the $\frac{3}{4}$-conjecture. We obtain some new results for the binary case of the $\frac{3}{4}$-conjecture with the help of quaternary fix-free codes.

2 The $\frac{3}{4}$-conjecture for q-ary fix-free codes

This section is about the cases, where the $\frac{3}{4}$-conjecture can be shown for an arbitrary finite alphabet \mathcal{A}. We give a generalization of a theorem from Kukorelly and Zeger (10), which was shown for the binary case originally. This theorem shows, that the $\frac{3}{4}$-conjecture holds for finite codes, if the number of codewords on each level, expect the maximal level, is bounded by a term which depends on the minimal level.

We write a sequence $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$ of nonnegative integers fits to a code $\mathcal{C} \subseteq \mathcal{A}^{*}$ if $\left|\mathcal{C} \cap \mathcal{A}^{l}\right|=\alpha_{l}$ for all $l \in \mathbb{N}$.

Theorem 1 Let $|\mathcal{A}|=q \geq 2,\left(\alpha_{l}\right)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=l_{\text {min }}}^{l_{\text {max }}} \alpha_{l} q^{-l} \leq \frac{3}{4}$ and $l_{\text {min }}:=\min \left\{l \mid \alpha_{l} \geq 0\right\}$,
$l_{\max }:=\sup \left\{l \mid \alpha_{l} \geq\right\} \leq \infty$. If $l_{\text {min }} \geq 2, l_{\max }<\infty$ and $\alpha_{l} \leq q^{l_{\min }-2}\left\lfloor\frac{q}{2}\right\rfloor^{2}\left\lceil\frac{q}{2}\right\rceil^{l-l_{\min }}$ for all $l \neq l_{\max }$, then there exists a fix-free Code $\mathcal{C} \subseteq \mathcal{A}^{*}$ which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.

3 Fix-free codes obtained from π-systems

We give a generalization of a theorem of Yekhanin (8), which shows that the $\frac{3}{4}$-conjecture holds for binary codes if the Kraftsum of the first level which occurs in the code together with it neighboring level is bigger than $\frac{1}{2}$.

For an arbitrary set $\mathcal{C} \subseteq \mathcal{A}^{*}$ the prefix-, suffix- and bifix-shadow of \mathcal{C} on the n-th level are defined as:

$$
\begin{aligned}
& \Delta_{P}^{n}(\mathcal{C}):=\bigcup_{l=0}^{n}\left(\mathcal{C} \cap \mathcal{A}^{l}\right) \mathcal{A}^{n-l} \subseteq \mathcal{A}^{n}, \\
& \Delta_{S}^{n}(\mathcal{C}):=\bigcup_{l=0}^{n} \mathcal{A}^{n-l}\left(\mathcal{C} \cap \mathcal{A}^{l}\right) \subseteq \mathcal{A}^{n}, \\
& \Delta_{B}^{n}(\mathcal{C}) \quad:=\Delta_{P}^{n}(\mathcal{C}) \cup \Delta_{S}^{n}(\mathcal{C}) \subseteq \mathcal{A}^{n} .
\end{aligned}
$$

For proving the theorem, Yekhanin introduced in (8) a special kind of fix-free codes, which he called π-systems:

Definition 1 Let $|\mathcal{A}|=2$, we say $\mathcal{D} \subseteq \bigcup_{l=1}^{n} \mathcal{A}^{l}$ is a π_{2}-system if \mathcal{D} is fix-free with Kraftsum $\frac{1}{2}$ and

$$
\begin{equation*}
\left|\Delta_{S}^{n}(\mathcal{D})\right|=\left|\Delta_{P}^{n}(\mathcal{D})\right|=\left|\mathcal{A}^{-1} \Delta_{P}^{n}(\mathcal{D})\right|=\left|\Delta_{S}^{n}(\mathcal{D}) \mathcal{A}^{-1}\right| \tag{1}
\end{equation*}
$$

To prove a generalization for arbitrary finite alphabets, we give a more general definition of π-systems.

Definition 2

Let $|\mathcal{A}|=q \geq 2,1 \leq k \leq q$ and $n \in \mathbb{N}$. We call a set $\mathcal{D} \subseteq \bigcup_{l=1}^{n} \mathcal{A}^{l} a \pi_{q}(n ; k)$-system if \mathcal{D} is fix-free, and there exists a partition of \mathcal{D} into k sets $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ for which the following three equivalent properties holds.
(1): For all $1 \leq i \leq k$ holds:

$$
\begin{aligned}
q^{n-1} & =\left|\Delta_{P}^{n}\left(\mathcal{D}_{i}\right)\right|=\left|\mathcal{A}^{-1} \Delta_{P}^{n}\left(\mathcal{D}_{i}\right)\right| \\
& =\left|\Delta_{S}^{n}\left(\mathcal{D}_{i}\right)\right|=\left|\Delta_{S}^{n}\left(\mathcal{D}_{i}\right) \mathcal{A}^{-1}\right|
\end{aligned}
$$

(2): $S(\mathcal{D})=\frac{k}{q}$ and for all i with $1 \leq i \leq k$ holds:

$$
\left|\Delta_{P}^{n}\left(\mathcal{D}_{i}\right)\right|=\left|\mathcal{A}^{-1} \Delta_{P}^{n}\left(\mathcal{D}_{i}\right)\right| \text { and }\left|\Delta_{S}^{n}\left(\mathcal{D}_{i}\right)\right|=\left|\Delta_{S}^{n}\left(\mathcal{D}_{i}\right) \mathcal{A}^{-1}\right|
$$

(3): For all $1 \leq i \leq k$ the set $\mathcal{A}^{-1} \mathcal{D}_{i}$ is maximal prefix-free, $\mathcal{D}_{i} \mathcal{A}^{-1}$ is maximal suffix-free and $\left|\mathcal{A}^{-1} \mathcal{D}_{i}\right|=\left|\mathcal{D}_{i} \mathcal{A}^{-1}\right|=\left|\mathcal{D}_{i}\right|$.

The sets $\mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$ are called a π-partition of \mathcal{D}
For $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}$ we call a $\pi_{q}(n ; k)$-system \mathcal{D} a $\pi_{q}\left(\alpha_{1}, \ldots, \alpha_{n} ; k\right)$-system if $\quad\left|\mathcal{D} \cap \mathcal{A}^{l}\right|=\alpha_{l}$ for all $1 \leq l \leq n$.
(1)-(3) in the definition are all equivalent.

For $1 \leq k<q$ let

$$
\gamma_{k}:=\left\{\begin{array}{l}
\frac{1}{2}+\frac{k}{2 q} \quad \text { for } 1 \leq k \leq\left\lfloor\frac{q}{2}\right\rfloor \\
\left(\frac{q-k}{q}\right)^{2}+\frac{k}{q} \text { for }\left\lfloor\frac{q}{2}\right\rfloor<k<q
\end{array}\right.
$$

Especially we have $\gamma_{\left\lceil\frac{q}{2}\right\rceil} \geq \frac{3}{4}$. We obtain the following theorem for fix-free extensions of π-systems:
Theorem 2 (π-system extension Theorem) Let $|\mathcal{A}|=q \geq 2, \quad 1 \leq k<q$, $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_{l} q^{-l} \leq \gamma_{k}$ and $n \in \mathbb{N}$,
$1 \leq \beta \leq \alpha_{n}$ such that $\beta q^{-n}+\sum_{l=1}^{n-1} \alpha_{l} q^{-l}=\frac{k}{q}$. Then for every $\pi_{q}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta ; k\right)$-system there exists a fix-free-extension which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.

Let $\mathcal{A}=\{0, \ldots, q-1\}$. The directed de Bruijn graph $\mathcal{B}_{q}(n)$ has \mathcal{A}^{n} as its vertex set and for every $a, b \in \mathcal{A}, w \in \mathcal{A}^{n-1}$ there is an edge $a w \rightarrow w b$ in $\mathcal{B}_{q}(n)$ which can be labelled by the word $a w b \in \mathcal{A}^{n+1}$.
By examining the existence of $\pi_{q}(n+1 ; k)$-systems with codewords on the n-th and $n+1$-th level but no other codeword lengths, we obtain that such a system exists if and only if there exists a k-regular subgraph in $\mathcal{B}_{q}(n-1)$ with the number of edges equal to the number of codewords of length n. Especially for such a $\pi_{q}(n+1 ; k)$ system the codewords of the n-th level are the edges of a k-regular subgraph of $\mathcal{B}_{q}(n-1)$ and the codewords of the $n+1$-level are given by $\bigcup_{i=1}^{k} \bigcup_{a \in \mathcal{A}} a \mathcal{V}^{c} \varphi_{i}(a)$, where \mathcal{V}^{c} is the complement of the vertex set of the k-regular subgraph of $\mathcal{B}_{q}(n-1)$ and $\varphi_{1}, \ldots, \varphi_{k}$ are permutations of \mathcal{A} with the property $\varphi_{i}(a) \neq \varphi_{j}(a)$ for $i \neq j, a \in \mathcal{A}$. Furthermore the codewords of a one-level $\pi_{q}(n)$-system are the edges of a k-factor of $\mathcal{B}_{q}(n-1)$ and vice versa. Thus we obtain with Theorem 2 the following generalization of Yekhanin's Theorem for arbitrary finite alphabets:
Theorem 3 Let $|\mathcal{A}|=q \geq 2,1 \leq k<q$ and $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_{l} q^{-l} \leq \gamma_{k}$.
(i) If $\frac{\alpha_{n}}{q^{n}}+\frac{\alpha_{n+1}}{q^{n+1}} \geq \frac{k}{q}, \alpha_{n}=k L$ for some $1 \leq L<q^{n-1}$ and there exists a k-regular subgraph in $\mathcal{B}_{q}(n-1)$ with L vertices, then there exists a fix-free code which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.
(ii) If $\frac{\alpha_{n}}{q^{n}} \geq \frac{k}{q}$ then there exists a fix-free code which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.

Since Lempel has shown in (11), that there are cycles of arbitrary length in $\mathcal{B}_{q}(n)$, we obtain for the binary case Yekhanin's original theorem.
By examining π_{q}-systems with more than two levels, we obtain with Theorem 2 .
Theorem 4 Let $|\mathcal{A}|=q \geq 2,1 \leq d<q, k \leq \min \{d, q-d\}$ and $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_{l} q^{-l} \leq \gamma_{k}$.
(i) Let $n \geq 2$. If $\alpha_{1}=0, \alpha_{l}=k d(q-d)^{l-2}$ for $2 \leq l<n$ and $\alpha_{n} \geq k q(q-d)^{n-2}$ then there exists a fix-free code which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.
(ii) Let $n \geq 3$. If $\alpha_{1}=\alpha_{2}=0, \alpha_{l}=k d(q-d)^{l-2}+k(q-d) d^{l-2}$ for $3 \leq l<n$ and $\alpha_{n} \geq$ $k q(q-d)^{n-2}+k q d^{n-2}$ then there exists a fix-free code which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.

4 The $\frac{3}{4}$-conjecture for binary fix-free codes

In this section we examine the $\frac{3}{4}$-conjecture for the special case $|\mathcal{A}|=2$. If we identify quaternary fix-free codes with binary fix-free codes in the natural way we obtain from the theorems above that the following statements hold for the binary case:
Theorem 5 Let $\mathcal{A}:=\{0,1\}$ and $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$ be a sequence of nonnegative integers with $\sum_{l=1}^{\infty} \alpha_{l}\left(\frac{1}{2}\right)^{l} \leq \frac{3}{4}$.
(i) If there exists an $n \geq 2$ such that $\alpha_{2}=\alpha_{2 l+1}=0$ for all $l \in \mathbb{N}_{0}, \alpha_{2 l}=2^{l}$ for all $2 \leq l<n$, $\alpha_{2 n} \geq 2^{n+1}$ and $\alpha_{2 l} \in \mathbb{N}_{0}$ for all $l>n$, then there exists a fix-free code $\mathcal{C} \subseteq \mathcal{A}^{+}$which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.
(ii) If there exists an $n \geq 3$ such that $\alpha_{2}=\alpha_{4}=\alpha_{2 l+1}=0$ for all $l \in \mathbb{N}_{0}, \alpha_{2 l}=2^{l+1}$ for all $2 \leq l<n, \alpha_{2 n} \geq 2^{n+2}$ and $\alpha_{2 l} \in \mathbb{N}_{0}$ for all $l>n$, then there exists a fix-free code $\mathcal{C} \subseteq \mathcal{A}^{+}$which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.
(iii) If there exists an $n \in \mathbb{N}$ such that $\alpha_{2}=\alpha_{4}=\ldots=\alpha_{2 n-2}=\alpha_{2 l+1}=0$ for all $l \in \mathbb{N}_{0}, \alpha_{2 n}$ is even, $\frac{\alpha_{2 n}}{2^{2 n}}+\frac{\alpha_{2 n+2}}{2^{2 n+2}} \geq \frac{1}{2}$ and there exists a 2 -regular subgraph of $\mathcal{B}_{4}(n-1)$ with $\frac{\alpha_{2 n}}{2}$ vertices, then there exists a fix-free code $\mathcal{C} \subseteq \mathcal{A}^{+}$which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.
(iv) Let $l_{\min }:=\min \left\{l \mid \alpha_{l} \neq 0\right\}$ and $l_{\max }:=\sup \left\{l \mid \alpha_{l} \neq 0\right\}$. If $l_{\max }<\infty, 4 \leq l_{\min }$ is even, $\alpha_{2 l+1}=0$ for all $l \in \mathbb{N}_{0}$ and $\alpha_{2 l} \leq 2^{\frac{l_{\text {min }}}{2}-2+l}$ for all $2 l \neq l_{\text {max }}$, then there exists a fix-free code $\mathcal{C} \subseteq \mathcal{A}^{+}$which fits to $\left(\alpha_{l}\right)_{l \in \mathbb{N}}$.

References

[1] L.G. Kraft, A device for quantizing, grouping and coding amplitude modulated pulses, Master's thesis, Dept. of Electrical Engineering, M.I.T., Cambridge, Mass., 1949.
[2] B. McMillan, Two inequalities implied by unique decipherability, IRE Trans. Inform. Theory, vol. IT-2, pp. 115-116, (1956).
[3] D. Huffman, A method for construction of minimum redundancy codes, Proc. of the IRE, vol. 40, pp. 1098-1101, (1952).
[4] M. P. Schützenberg, On an application of semigroup methods to some problems in coding, IRE. Trans. Inform. Theory, vol. IT-2, pp 47-60, (1956).
[5] E. N. Gilbert and E. F. Moore, Variable-length binary encodings, Bell Syst. Tech. J., vol. 38, pp. 933-968, July (1959).
[6] R. Ahlswede, B.Balkenhol and L.Khachatrian, Some Properties of Fix-Free Codes, Proc. $1^{\text {st }}$ Int. Sem. on Coding Theory and Combinatorics, Thahkadzor, Armenia, pp. 20-33, (1996).
[7] K. Harada and K. Kobayashi, A Note on the Fix-Free Property, IEICE Trans. Fundamentals, vol. E82-A, no 10, pp.2121-2128, October (1999).
[8] S. Yekhanin, Sufficient Conditions of Existence of Fix-Free Codes, Proc. Int. Symp. Information Theory, Washington, D.C., p.284, June (2001).
[9] S. Yekhanin, Improved upper bound for the redundancy of fix-free codes, IEEE Tran. Inform. Theory., vol. 50, Issue 11, pp. 2815-2818, Nov. (2004)
[10] Z. Kukorelly and K. Zeger, Sufficient Condition for Existence of Binary Fix-Free Codes, submitted to IEEE Trans. Inform. Theory. October 15, (2003).
[11] A. Lempel, m-Ary closed sequences, J. Cobin. Theorey 10, pp. 253-258, (1971).
[12] S.W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, (1982).

[^0]: 1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

