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On the Grone-Merris conjecture
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Grone and Merris (5) conjectured that the Laplacian spectrum of a graph is majorized by its conjugate vertex degree
sequence. We prove that this conjecture holds for a class of graphs including trees. We also show that this conjecture
and its generalization to graphs with Dirichlet boundary conditions are equivalent.
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1 Introduction
One way to extract information about the structure of a graph is to encode the graph in a matrix and
study the invariants of that matrix, such as the spectrum. In this note, we study the spectrum of the
Combinatorial Laplacian matrix of a graph.

The Combinatorial Laplacian of a simple graph G = (V,E) on the set of n vertices is the n×n matrix
L(G) that records the vertex degrees on its diagonal and−1 when an off-diagonal entry ij corresponds to
an edge (i, j) of G. The matrix L(G) is positive semidefinite, so its eigenvalues are real and non-negative.
We list them in non-increasing order and with multiplicity: λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G) = 0

We are interested in the conjecture of Grone and Merris (GM) that the spectrum λ(L(G)) is majorized
by the conjugate partition of the non-increasing sequence of vertex degrees of G (5). This question is
currently being studied (see for example (4)), but has yet to be resolved. We extend the class of graphs
for which the conjecture is known to hold to include trees. We also show that if GM holds for graph
Laplacians, it also holds for more general Dirichlet Laplacians (cf. (2)) as conjectured by Duval (3).

2 Background and definitions
Given a graph G = (V,E) with n = |V | vertices and m = |E| edges, there are several ways to represent
G as a matrix. There is the edge–incidence matrix, a n ×m matrix that records in each column the two
vertices incident on a given edge. For directed graphs we can consider a signed edge–incidence matrix
∂(G) which records 1 for the head of an edge and−1 for the tail. There is also the n×n adjacency matrix
A(G) whose ijth entry is 1 when (i, j) is an edge of G, 0 otherwise.

We can encode the (vertex) degree sequence of G in non-increasing order as a vector d(G) of length
n, and in an n × n matrix D(G) whose diagonal is d(G) and whose off-diagonal elements are 0. Then
the Combinatorial Laplacian L(G) that we study is simply D(G) − A(G). It is easy to check that if we
(arbitrarily) orient G and consider the matrix ∂(G) above, we also have L(G) = ∂(G)∂(G)t.
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The field of spectral graph theory is the study of the structure of graphs through the spectra (eigenvalues)
of matrices encoding G. For a survey see (1). Besides theoretical aspects of spectral graph theory, there
are a wide range of applications of the subject to chemistry and physics as well as to problems in other
branches of mathematics such as random walks and isoperimetric problems. In the case of L(G), there
has been considerable effort to study the eigenvalue λn−1, which is known as the algebraic connectivity
of G. It can be shown that λn−1(G) = 0 if and only if G is disconnected. Bounds on λn−1(G) give
information on how well connected a graph is, and are useful, for example, in showing the existence of
expander graphs. This and other applications are discussed in (1).

Currently, little is known about the middle terms of the spectrum. This is partly because it varies
widely depending on the graph. However, Grone and Merris (5) conjecture that the conjugate partition
of the degree sequence majorizes the spectrum, and showed that the majorization inequalities are tight on
the class of threshold graphs. This conjecture has been extended to simplicial complexes in recent work
by Duval and Reiner (4).

We recall that a partition p = p(i) is a non-increasing sequence of natural numbers, and its conjugate is
the sequence pT (j) := |{i : p(i) ≤ j}|. Then pT has exactly p(1) non-zero elements. When convenient,
we can add or drop trailing zeros in a partition. For non-increasing real sequences s and t of length n, we
say that s is majorized by t (denoted s � t) if for all k ≤ n:

∑k
i=1 si ≤

∑k
i=1 ti and

∑n
i=1 si =

∑n
i=1 ti.

The concept of majorization extends to vectors by comparing the non-increasing vectors produced by
sorting the elements of the vector into non-increasing order.

There is a rich theory of majorization inequalities which occur throughout mathematics, see for ex-
ample (6). Matrices are an important source of such inequalities. Notably, the relationship between the
diagonal and spectrum of a Hermitian matrix is characterized by majorization. Many useful facts about
majorization can be found in (6). We mention two in particular:

Fan’s theorem is that for positive semidefinite matrices A and B: λ(A + B) � λ(A) + λ(B).
The Gale-Ryser theorem is as follows: Let A be an m × n 0-1 (or incidence) matrix, with row sums

r1, . . . , rm and columns sums c1, . . . , cn both indexed in non-increasing order. Let rT be the conjugate
of the partition (r1, . . . , rm), and c be the partition (c1, . . . , cn). Then: c � rT .

The Grone-Merris conjecture (GM) is that the spectrum of the combinatorial Laplacian of a graph is
majorized by its conjugate degree sequence, that is: λ(G) � dT (G).

If we ignore isolated vertices (which contribute only zero entries to λ and d) we will have dT
1 = n.

Using this fact, it is possible to show that λ1 ≤ dT
1 . Three short proofs of this are given in (4). The

authors then continue to prove the second majorization inequality: λ1 + λ2 ≤ dT
1 + dT

2 . However, their
proof would be difficult to extend.

There are several other facts which fit well with the GM conjecture. One is that if the GM conjecture
holds, then the instances where GM holds with equality are well-understood, these would be the threshold
graphs (see below). Also, since d and λ are respectively the diagonal and spectrum of L(G) we have
d � λ. Combining this with GM gives d � dT , a fact that has been proved combinatorially. We refer to
(4) for further discussion.

3 Grone-Merris on classes of graphs
In this section we give further evidence for the Grone-Merris conjecture by remarking that it holds for
several classes of graphs including threshold graphs, regular graphs and trees.
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The GM conjecture was originally formulated in the context of threshold graphs, which are a class
of graphs with several extremal properties. Threshold graphs are the graphs that can be constructed
recursively by adding isolated vertices and taking graph complements. It turns out that they are also
characterized by degree sequences: the convex hull of possible (unordered) degree sequences of an n
vertex graph defines a polytope. The extreme points of this polytope are the degree sequences that have a
unique labelled realization, and these realizations are exactly the threshold graphs.

Threshold graphs are interesting from the point of view of spectra. Several people, including Grone
and Merris (5) have studied the question of which graphs have integer spectra. It turns out that threshold
graphs are one class of graphs that have integer spectra, and for these graphs we have λ(G) = dT (G).

In the process of showing this equality for threshold graphs, Grone and Merris observed that for non-
threshold graphs, the majorization inequality λ(G) � dT (G) appears to hold, and made their conjecture.
We could describe the conjecture as saying that threshold graphs are extreme in terms of spectra, and that
these extreme spectra can be interpreted as conjugate degree sequences.

For some small classes of graphs, it can be easily shown that the GM conjecture holds. Consider a k-
regular graph G on n vertices (in a k-regular graph, all vertices have degree k). Then the degree sequence
d(G) is k repeated n times, and its conjugate dT (G) is n repeated k times followed by n− k zeros. Thus
dT majorizes every non-negative sequence of sum kn whose largest terms is at most n, and in particular
λ � dT .

Using facts about the initial GM inequalities we can prove that GM must hold for graphs with low max-
imal degree. For example, if a graph has maximum vertex degree 2, then dT

3 = dT
4 = . . . = dT

n = 0, so
for k = 2, 3, . . . , n:

∑k
i=1 λi ≤

∑n
i=1 λi =

∑n
i=1 dT

i =
∑k

i=1 dT
i . More generally, the GM inequalities

for k ≥ max deg(G) hold trivially. Since λ1 ≤ dT
1 we get that GM holds for graphs of maximum degree

2. Using the second majorization inequality we see that GM holds for graphs of maximum degree 3.
It is tempting to try to prove GM inductively by breaking graphs into simpler components on which

GM clearly holds. In this section, we remark that if G is almost the union of two smaller graphs on which
GM holds then GM holds for G as well. In particular, this result implies that GM holds for trees.

Take two graphs A = (VA, EA) and B = (VB , EB) on disjoint vertex sets VA and VB . Define their
disjoint sum to be A + B = (VA ∪ VB , EA ∪ EB). Assuming VA and VB are not empty this is a
disconnected graph. Now take two graphs G = (V,EG) and H = (V,EH) on the same vertex set V .
Define their union as G ∪H = (V,EG ∪ EH).

Given the spectra and conjugate degree sequences of A and B, the spectrum of A+B is (up to ordering)
the concatenation of the vectors λ(A) and λ(B), while the conjugate degree sequence of A+B is dT (A+
B) = dT (A) + dT (B) (taking each vector to have length n). Then if λ(A) � dT (A) and λ(B) � dT (B)
we will have λ(A+B)�dT (A+B). In a typical situation, where neither A or B is very small, we would
expect the above majorization inequality to hold with considerable slack. We can use this slack to show
that if we add a few more edges to A + B the majorization will still hold.

Theorem 3.1 Take graphs A or B on disjoint vertex sets VA and VB . Let G = A+B and on V = VA∪VB

let C be a graph of “new edges” between VA and VB . Assume that GM holds on A, B and C, i.e. that
λ(A) � dT (A), λ(B) � dT (B) and λ(C) � dT (C). Additionally, assume that dT

i (C) ≤ dT
i (A), dT

i (B)
for all i, and that dT

1 (B) ≤ dT
m(A) where m is the largest non-zero index of dT (C) (equivalently, m is

the maximum vertex degree in C). Let H = C ∪G. Then: λ(H) � dT (H).

This theorem is proved by carefully estimating the slack in λ(G)�dT (G), the details are omitted here.
Theorem 3.1 implies that GM holds for trees by induction: trees of diameter 1 or 2 are threshold graphs,
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while trees of diameter at least 3 can be decomposed into two smaller trees A and B with at least one
edge, and a single linking edge C.

4 Simplices and pairs
The most recent work relating to the GM conjecture has been to study the spectra of more general struc-
tures than graphs, such as simplicial complexes and simplicial family pairs. In this section we show
that the generalization of GM to graphs with Dirichlet boundary conditions is equivalent to the original
conjecture and may be useful in approaching GM.

In (4), the authors look at simplicial complexes, which are higher dimensional analogues of simple
graphs. A set of faces of a given dimension i is called an i-family. Given a simplicial complex ∆ we can
denote the i-family of all faces in ∆ of dimension i as ∆(i). For example, a graph is a 1-dimensional
complex, and its edge set is the 1-family ∆(1). Define the degree sequence d of an i-family to be the list
of the numbers of i-faces from the family incident on each vertex, and sorted into non-increasing order.
We can then define d(∆, i) as the degree sequence of ∆(i), which we can abbreviate to d(∆) or d when
the context is clear.

We define the chain group Ci(∆) of formal linear combinations of elements of ∆(i), and generalize the
signed incidence matrix ∂ of Section 2 to a signed boundary map ∂i : Ci(∆) → Ci−1(∆). This allows
us to define a Laplacian on Ci(∆), namely Li(∆) = ∂i∂

T
i , and study its corresponding spectrum s(∆, i)

sometimes abbreviated s(∆) or s.
Duval and Reiner (4) looked at shifted simplicial complexes, which are a generalization of threshold

graphs to complexes. They showed that for a shifted complex ∆ and any i, we have s(∆, i) = dT (∆, i).
They then conjectured that GM also holds for complexes, i.e. that for any complex and any i we have:
s(∆, i) � dT (∆, i) They also show that some related facts, such as λ1 ≤ dT

1 generalize to complexes.
In (3), Duval continues by studying relative (family) pairs (K, K ′) where the set K = ∆(i) for some

i is taken modulo a family of (i − 1)-faces K ′ ⊆ ∆(i−1). When K ′ = ∅, this reduces to the situation of
the previous section. In the case i = 1 this is the edge set of a graph (K) with a set of deleted boundary
vertices K ′. This type of graph with a boundary appears in conformal invariant theory. In this language,
the relative Laplacian of an (edge, vertex) pair is sometimes referred to as a Dirichlet Laplacian and its
eigenvalues as Dirichlet eigenvalues, see for example (2).

We can form chain groups Ci(K) and Ci−1(K, K ′) and use these to define a (signed) boundary op-
erator on the pair ∂(K, K ′) : Ci(K) → Ci−1(K, K ′). Hence we get a Laplacian for family pairs
L(K, K ′) = ∂(K, K ′)∂(K, K ′)T . Considered as a matrix, L(K, K ′) will be the principal submatrix of
L(K) whose rows are indexed by the i-faces in ∆(i−1) − K ′. Finally, we get a spectrum s(K, K ′) for
family pairs from the eigenvalues of L(K, K ′).

Duval defines the degree dv(K, K ′) of vertex v (in the case of a graph, v is allowed to be in K ′) relative
to the pair (K, K ′) as the number of faces in K that contain v such that K − {v} is in ∆(i−1) −K ′. This
allows him to define the degree sequence d(K, K ′) for pairs, and to conjecture that GM holds for relative
pairs: s(K, K ′) � dT (K, K ′).

It turns out that at least in the case of (edge, vertex) pairs this majorization follows from the original
GM conjecture for graphs.

Theorem 4.1 GM for graphs ⇒ GM for (edge, vertex) pairs.
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Proof: Let G = (V,E) be a graph with D ⊆ V a set of “deleted” vertices. Let U = V − D be the
remaining undeleted vertices. We will assume that GM holds only on the undeleted part of the graph,
i.e. G|U . So we have s(G|U ) � dT (G|U ). We can ignore the edges in G|D completely, since they have no
effect on either s(E,D) or d(E,D). The remaining edges connect vertices in D to vertices in U . Define
G′ to be the graph on V whose edge are exactly the edges of G between D and U . Let a be the degree
sequence of the deleted vertices in G′ and b be the degree sequence of the undeleted vertices in G′.

We can compute dT (E,D) in terms of the degree sequences and spectra of G|U , G′ and G|D since
dT

i (E,D) is the number of vertices (deleted or not) attached to at least i non-deleted vertices. The number
of such vertices in U will be dT

i (G|U ), and the number in D will be dT
i (G′) = aT . Hence dT (E,D) =

dT
i (G|U ) + aT .
Now consider the Laplacian L(E,D). This is the submatrix of L(G) indexed by U . An edge (i, j)

in G|U contributes to entries ii, ij, ji, jj in both L(E,D) and L(G). An edge in G′, say from i ∈ U to
j ∈ D contributes only to entry ii, and an edge in G|D does not affect L(E,D). So, we have L(E,D) =
L(G|U ) + Diag(b), and by Fan’s theorem we have: s(E,D) � s(G|U ) + b.

We complete our equivalence by appealing to the Gale-Ryser theorem to claim that b � aT . This
follows from the fact that a and b are row and column sums (in non-increasing order) of the |D| × |U |
bipartite incidence matrix for G′. Combining this with the majorization above and the assumption that
s(G|U ) � dT (G|U ) we get: s(E,D) � s(G|U ) + b � dT (G|U ) + aT = dT (E,D).

This proof relies on the bipartite structure of G′, so it is not immediately obvious how to extend it to
higher dimensional complexes. It would be interesting to do this.

Acknowledgements
This work was done while the author was a postdoctoral member of the Institute for Mathematics and its
Applications at the University of Minnesota. Thanks to Vic Reiner for the question and many comments.

References
[1] Fan R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in Mathe-

matics. American Mathematical Society, 1997.

[2] Fan R. K. Chung and Robert P. Langlands. A combinatorial Laplacian with vertex weights. J. Combin.
Theory Ser. A, 75(2):316–327, 1996.

[3] Art M. Duval. A common recursion for laplacians of matroids and shifted simplicial complexes.
Preprint. Available as: arXiv:math.CO/0310327, 2003.

[4] Art M. Duval and Victor Reiner. Shifted simplicial complexes are Laplacian integral. Trans. Amer.
Math. Soc., 354(11):4313–4344, 2002.

[5] Robert Grone and Russell Merris. The Laplacian spectrum of a graph. II. SIAM J. Discrete Math.,
7(2):221–229, 1994.

[6] Albert W. Marshall and Ingram Olkin. Inequalities: theory of majorization and its applications,
volume 143 of Mathematics in Science and Engineering. Academic Press Inc. [Harcourt Brace Jo-
vanovich Publishers], New York, 1979.



192 Tamon Stephen


