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Brylawski’s Decomposition of NBC
Complexes of Abstract Convex Geometries
and Their Associated Algebras
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We introduce a notion of a broken circuit and an NBC complex for an (abstract) convex geometry. Based on these
definitions, we shall show the analogues of the Whitney-Rota’s formula and Brylawski’s decomposition theorem for
broken circuit complexes on matroids for convex geometries. We also present an Orlik-Solomon type algebra on a
convex geometry, and show the NBC generating theorem. This note is on the same line as the studies in [10, 11, 12].
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1 Closure Systems, Matroids, and Convex Geometries
A collection K ⊆ 2E of subsets of a finite set E is a closure system if

(1) E ∈ K,

(2) X, Y ∈ K =⇒ X ∩ Y ∈ K.

An element of K is called a closed set. A closure system determines a closure operator

σ(A) =
⋂

X∈K,A⊆X

X (A ⊆ E). (1.1)

An element in ∩{X : X ∈ K} = σ(∅) is a loop, and K is loop-free if it has no loops.
A map Ex : 2E → 2E defined by Ex(A) = {e ∈ A : e 6∈ σ(A \ e)} (A ⊆ E) is an extreme

function. We say that an element in Ex(A) is an extreme element of A, and we call an extreme element
of the entire set E a coloop. A subset A ⊆ E is an independent set if Ex(A) = A. A set which is not
independent is dependent, and a minimal dependent set is called a circuit. It is easy to see that any subset
of an independent set is independent.

When a closure operator satisfies the Steinitz-McLane exchange property below,

if x, y 6∈ σ(A) and y ∈ σ(A ∪ x), then x ∈ σ(A ∪ y) (x, y ∈ E, A ⊆ E), (1.2)
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then the corresponding closure system is the set of flats (closed sets) of a matroid M on E, and vice
versa. The notions of an independent set and a circuit introduced above as a closure system agree with the
ordinary definitions of matroid theory.

Let M be a matroid on E, and suppose we have a linear order ω on E. When C is a circuit of M and e
is the minimum element in C with respect to ω, we call C \ e a broken circuit.

A subset of E is nbc-independent if it contains no broken circuits of M . Evidently an nbc-independent
set is an independent set of M . The collection of nbc-independent sets forms a simplicial complex
NBC(M,ω), which is called a broken circuit complex of M (with respect to ω).

When the closure operator satisfies the anti-exchange property below

if x, y 6∈ σ(A) and y ∈ σ(A ∪ x), then x 6∈ σ(A ∪ y) (x, y ∈ E, A ⊆ E), (1.3)

the closure system K is called an (abstract) convex geometry. Convex geometries arise from various
combinatorial objects such as affine point configurations, chordal graphs, posets, semi-lattices, searches
on a rooted graph, and so on. (See [4, 9].)

Since a convex geometry itself is a closure system, we have the corresponding definitions of an inde-
pendent set and a circuit for a convex geometry. In a circuit of a convex geometry there exists uniquely
an element that is not extreme. (In a circuit of a matroid there is no element that is extreme.) That is, a
circuit C of a convex geometry contains a unique element e such that Ex(C) = C \ e. We say that e is
the root of C, and X = C \ e is a broken circuit with respect to the root e. And (X, e) is a rooted circuit.
Let us call a set nbc-independent if it contains no broken circuit. The collection of nbc-independent sets
forms a simplicial complex, which is the NBC complex of K denoted by NBC(K).

Note that to determine a broken circuit for a matroid it is required to assume a linear order on the
underlying set, while there is no need to suppose such an order when we define a broken circuit for a
convex geometry.

2 Whitney-Rota’s Formula and Its Analogue
2.1 Matroid
The NBC complexes of matroids appear in the Whitney-Rota’s formula. Let L(M) be the lattice consist-
ing of the closed sets (flats) of M . The characteristic polynomial p(M ;λ) of M is defined by

p(λ;M) =
∑

X∈L(M)

µ(σ(∅), X)λr(E)−r(X). (2.1)

Then the Whitney-Rota’s formula for matroids is described as

Theorem 2.1 (Rota [14]) For an arbitrary linear order ω on E, we have

p(λ;M) =
∑

X∈NBC(M,ω)

(−1)|X|λr(E)−r(X). (2.2)

2.2 Convex Geometry
Let K be a loop-free convex geometry on a finite set E. The characteristic function of K is

p(λ;K) =
∑

X∈K

µK(∅, X)λ|E|−|X| (2.3)
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where µK is the Möbius function of the lattice K. A set which is both closed and independent is a free set.
The collection of the free sets constitutes a simplicial complex, called a free complex [3]. A free complex
plays an important role in the counting formula of the interior points of an affine point configuration
proved by Klain [8], and Edelman and Reiner [5]. A free complex of a convex geometry can be revealed
to be equal to its NBC complex. That is,

Theorem 2.2 A subset of E is a free set if and only if it is nbc-independent. Equivalently, the free
complex of a convex geometry coincides with its NBC complex.

Edelman [3] explicitly determined the values of µK as:

Lemma 2.1 (Edelman [3]) For a closed set X ∈ K,

µK(∅, X) =

{
(−1)|X| if X is free,
0 otherwise.

(2.4)

Theorem 2.2 and Lemma 2.1 immediately give rise to the Whitney-Rota’s formula for convex geometry:

Theorem 2.3 For a convex geometry K and the characteristic polynomial (2.3), it holds that

p(λ;K) =
∑

X∈NBC(K)

(−1)|X|λ|E|−|X|. (2.5)

3 Brylawskifs Decomposition and Its Analogue
3.1 Matroid
Brylawski [2] showed a direct-sum decomposition theorem of NBC complex of a matroid below.

Theorem 3.1 (Brylawski [2]) Let (M,ω) be an ordered matroid, and x be the maximum element with
respect to ω. Then

NBC(M,ω) = NBC(M \ x, ω) ] (NBC(M/x, ω) ∗ x) (3.1)

where NBC(M/x, ω) ∗ x = {A ∪ x : A ∈ NBC(M/x, ω)}

3.2 Convex Geometry
Let K be a convex geometry on E. For a coloop e, K \ e = {X : X ∈ K, e 6∈ X} is a convex geometry
on E \ e, which is a deletion of e from K. For any element e ∈ E, K/e = {X \ e : X ∈ K, e ∈ X}
is a convex geometry on E \ e, which is a contraction of e from K. We have Brylawski’s decomposition
theorem for convex geometries as

Theorem 3.2 For a coloop x ∈ E of a convex geometry K, we have

NBC(K) = NBC(K \ x) ] (NBC(K/x) ∗ x) (3.2)



210 Kenji Kashiwabara and Masataka Nakamura

4 Orlik-Solomon Algebra and Its Analogues
4.1 Matroid
An NBC complex is known to provide a linear basis of the Orlik-Solomon algebra, which we shall describe
below. Suppose E = {e1, . . . , en}. Taking e1, . . . , en as generators, we denote a graded external algebra
over the free module ⊕e∈EZe by

∧
E = ⊕i∈N

∧i
E. A linear map ∂ :

∧
E −→

∧
E is defined by

(1) ∂0 : Z −→ (0), (2) ∂1 :
∧1

E −→ Z where ∂(e) = 1 (e ∈ E),

(3) for k = 2, . . . , n:

∂k :
k∧

E −→
k−1∧

E, ∂k(ei1 ∧ . . .∧ eik
) =

k∑
j=1

(−1)j−1ei1 ∧ . . .∧ êij
∧ . . .∧ eik

Although it is a little abuse of terminology, for the sake of simplicity, we associate a term eX =
x1 ∧ · · · ∧ xt in

∧
E with each subset X = {x1, . . . , xt} ⊆ E.

Suppose I(M) to be an ideal generated by {∂(eC) : C is a circuit of M with |C| > 2} ∪ {e :
e is a loop od M}. Then the Orlik-Solomon algebra of M is defined as

OS(M) =
(∧

E
)

/I(M). (4.1)

Theorem 4.1 (NBC basis theorem for the Orlik-Solomon algebra [1], [13]) Let M be a matroid on E,
and ω be an arbitrary linear order on the underlying set. Then {eX : X ∈ NBC(M,ω)} is a linear basis
of module OS(M).

4.2 Convex Geoemtry
Suppose K to be a loop-free convex geometry on E = {e1, . . . , en}. The graded external algebra

∧
E =

⊕n
i=0

∧i
E and a linear map ∂ :

∧
E −→

∧
E are defined in the same way as before. And let I(K)

be the ideal in
∧

E generated by {∂(eC) : C is a circuit of K}, and let us define an Orlik-Solomon type
algebra of a convex geometry K by

OS(K) =
(∧

E
)

/I(K). (4.2)

It can be shown that {eX : X ∈ NBC(K)} is a linear generating set of OS(K). That is, although the
NBC basis theorem (Theorem 4.1) does not hold for OS(K), we have a weaker form, the NBC generating
theorem, below.

Theorem 4.2 An arbitrary element in OS(K) can be represented as a linear combination of the terms in
{eX : X ∈ NBC(K)}.

There is an alternative definition of an Orlik-Solomon type algebra so that the NBC basis theorem
would be satisfied. Let J(K) be the ideal generated by {eX : X is a broken circuit of K}, and let us
define an algebra

A(K) =
(∧

E
)

/J(K) (4.3)
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By definition {eX : X ∈ NBC(K)} is necessarily a linear basis of module A(K).
Hence the decomposition of Theorem 3.2 readily implies the short exact split sequence theorem for

A(K).

Theorem 4.3 For a coloop x of a convex geometry K,

0 −→ A(K \ x) ix−→ A(K)
px−→ A(K/x) −→ 0 (4.4)

is an exact short split sequence.
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