Brylawski's Decomposition of NBC Complexes of Abstract Convex Geometries and Their Associated Algebras

Kenji Kashiwabara ${ }^{1}$ and Masataka Nakamura ${ }^{1}$
${ }^{1}$ Department of Systems Science, University of Tokyo, Komaba 3-8, Meguro, Tokyo, Japan

Abstract

We introduce a notion of a broken circuit and an NBC complex for an (abstract) convex geometry. Based on these definitions, we shall show the analogues of the Whitney-Rota's formula and Brylawski's decomposition theorem for broken circuit complexes on matroids for convex geometries. We also present an Orlik-Solomon type algebra on a convex geometry, and show the NBC generating theorem. This note is on the same line as the studies in [10, 11, 12].

Keywords: broken circuit, characteristic polynomial, NBC basis theorem

1 Closure Systems, Matroids, and Convex Geometries

A collection $K \subseteq 2^{E}$ of subsets of a finite set E is a closure system if
(1) $E \in K$,
(2) $X, Y \in K \Longrightarrow X \cap Y \in K$.

An element of K is called a closed set. A closure system determines a closure operator

$$
\begin{equation*}
\sigma(A)=\bigcap_{X \in K, A \subseteq X} X \quad(A \subseteq E) \tag{1.1}
\end{equation*}
$$

An element in $\cap\{X: X \in K\}=\sigma(\emptyset)$ is a loop, and K is loop-free if it has no loops.
A map $E x: 2^{E} \rightarrow 2^{E}$ defined by $E x(A)=\{e \in A: e \notin \sigma(A \backslash e)\}(A \subseteq E)$ is an extreme function. We say that an element in $E x(A)$ is an extreme element of A, and we call an extreme element of the entire set E a coloop. A subset $A \subseteq E$ is an independent set if $E x(A)=A$. A set which is not independent is dependent, and a minimal dependent set is called a circuit. It is easy to see that any subset of an independent set is independent.

When a closure operator satisfies the Steinitz-McLane exchange property below,

$$
\begin{equation*}
\text { if } x, y \notin \sigma(A) \text { and } y \in \sigma(A \cup x), \text { then } x \in \sigma(A \cup y) \quad(x, y \in E, A \subseteq E) \tag{1.2}
\end{equation*}
$$

then the corresponding closure system is the set of flats (closed sets) of a matroid M on E, and vice versa. The notions of an independent set and a circuit introduced above as a closure system agree with the ordinary definitions of matroid theory.

Let M be a matroid on E, and suppose we have a linear order ω on E. When C is a circuit of M and e is the minimum element in C with respect to ω, we call $C \backslash e$ a broken circuit.

A subset of E is nbc-independent if it contains no broken circuits of M. Evidently an nbc-independent set is an independent set of M. The collection of nbc-independent sets forms a simplicial complex $N B C(M, \omega)$, which is called a broken circuit complex of M (with respect to ω).

When the closure operator satisfies the anti-exchange property below

$$
\begin{equation*}
\text { if } x, y \notin \sigma(A) \text { and } y \in \sigma(A \cup x), \text { then } x \notin \sigma(A \cup y) \quad(x, y \in E, A \subseteq E) \tag{1.3}
\end{equation*}
$$

the closure system K is called an (abstract) convex geometry. Convex geometries arise from various combinatorial objects such as affine point configurations, chordal graphs, posets, semi-lattices, searches on a rooted graph, and so on. (See [4, 9].)

Since a convex geometry itself is a closure system, we have the corresponding definitions of an independent set and a circuit for a convex geometry. In a circuit of a convex geometry there exists uniquely an element that is not extreme. (In a circuit of a matroid there is no element that is extreme.) That is, a circuit C of a convex geometry contains a unique element e such that $E x(C)=C \backslash e$. We say that e is the root of C, and $X=C \backslash e$ is a broken circuit with respect to the root e. And (X, e) is a rooted circuit. Let us call a set $n b c$-independent if it contains no broken circuit. The collection of nbc-independent sets forms a simplicial complex, which is the NBC complex of K denoted by $N B C(K)$.

Note that to determine a broken circuit for a matroid it is required to assume a linear order on the underlying set, while there is no need to suppose such an order when we define a broken circuit for a convex geometry.

2 Whitney-Rota's Formula and Its Analogue

2.1 Matroid

The NBC complexes of matroids appear in the Whitney-Rota's formula. Let $\mathcal{L}(M)$ be the lattice consisting of the closed sets (flats) of M. The characteristic polynomial $p(M ; \lambda)$ of M is defined by

$$
\begin{equation*}
p(\lambda ; M)=\sum_{X \in \mathcal{L}(M)} \mu(\sigma(\emptyset), X) \lambda^{r(E)-r(X)} \tag{2.1}
\end{equation*}
$$

Then the Whitney-Rota's formula for matroids is described as
Theorem 2.1 (Rota [14]) For an arbitrary linear order ω on E, we have

$$
\begin{equation*}
p(\lambda ; M)=\sum_{X \in N B C(M, \omega)}(-1)^{|X|} \lambda^{r(E)-r(X)} . \tag{2.2}
\end{equation*}
$$

2.2 Convex Geometry

Let K be a loop-free convex geometry on a finite set E. The characteristic function of K is

$$
\begin{equation*}
p(\lambda ; K)=\sum_{X \in K} \mu_{K}(\emptyset, X) \lambda^{|E|-|X|} \tag{2.3}
\end{equation*}
$$

where μ_{K} is the Möbius function of the lattice K. A set which is both closed and independent is a free set. The collection of the free sets constitutes a simplicial complex, called a free complex [3]. A free complex plays an important role in the counting formula of the interior points of an affine point configuration proved by Klain [8], and Edelman and Reiner [5]. A free complex of a convex geometry can be revealed to be equal to its NBC complex. That is,

Theorem 2.2 A subset of E is a free set if and only if it is nbc-independent. Equivalently, the free complex of a convex geometry coincides with its NBC complex.

Edelman [3] explicitly determined the values of μ_{K} as:
Lemma 2.1 (Edelman [3]) For a closed set $X \in K$,

$$
\mu_{K}(\emptyset, X)= \begin{cases}(-1)^{|X|} & \text { if } X \text { is free } \tag{2.4}\\ 0 & \text { otherwise }\end{cases}
$$

Theorem 2.2 and Lemma 2.1 immediately give rise to the Whitney-Rota's formula for convex geometry:

Theorem 2.3 For a convex geometry K and the characteristic polynomial (2.3), it holds that

$$
\begin{equation*}
p(\lambda ; K)=\sum_{X \in N B C(K)}(-1)^{|X|} \lambda^{|E|-|X|} \tag{2.5}
\end{equation*}
$$

3 Brylawskifs Decomposition and Its Analogue

3.1 Matroid

Brylawski [2] showed a direct-sum decomposition theorem of NBC complex of a matroid below.
Theorem 3.1 (Brylawski [2]) Let (M, ω) be an ordered matroid, and x be the maximum element with respect to ω. Then

$$
\begin{equation*}
N B C(M, \omega)=N B C(M \backslash x, \omega) \uplus(N B C(M / x, \omega) * x) \tag{3.1}
\end{equation*}
$$

where $N B C(M / x, \omega) * x=\{A \cup x: A \in N B C(M / x, \omega)\}$

3.2 Convex Geometry

Let K be a convex geometry on E. For a coloop $e, K \backslash e=\{X: X \in K, e \notin X\}$ is a convex geometry on $E \backslash e$, which is a deletion of e from K. For any element $e \in E, K / e=\{X \backslash e: X \in K, e \in X\}$ is a convex geometry on $E \backslash e$, which is a contraction of e from K. We have Brylawski's decomposition theorem for convex geometries as

Theorem 3.2 For a coloop $x \in E$ of a convex geometry K, we have

$$
\begin{equation*}
N B C(K)=N B C(K \backslash x) \uplus(N B C(K / x) * x) \tag{3.2}
\end{equation*}
$$

4 Orlik-Solomon Algebra and Its Analogues

4.1 Matroid

An NBC complex is known to provide a linear basis of the Orlik-Solomon algebra, which we shall describe below. Suppose $E=\left\{e_{1}, \ldots, e_{n}\right\}$. Taking e_{1}, \ldots, e_{n} as generators, we denote a graded external algebra over the free module $\oplus_{e \in E} \mathbb{Z} e$ by $\bigwedge E=\oplus_{i \in \mathbb{N}} \bigwedge^{i} E$. A linear map $\partial: \Lambda E \longrightarrow \Lambda E$ is defined by
(1) $\partial_{0}: \mathbb{Z} \longrightarrow(0)$,
(2) $\partial_{1}: \Lambda^{1} E \longrightarrow \mathbb{Z}$ where $\partial(e)=1 \quad(e \in E)$,
(3) for $k=2, \ldots, n$:

$$
\partial_{k}: \bigwedge^{k} E \longrightarrow \bigwedge^{k-1} E, \quad \partial_{k}\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}\right)=\sum_{j=1}^{k}(-1)^{j-1} e_{i_{1}} \wedge \ldots \wedge \widehat{e_{i_{j}}} \wedge \ldots \wedge e_{i_{k}}
$$

Although it is a little abuse of terminology, for the sake of simplicity, we associate a term $e_{X}=$ $x_{1} \wedge \cdots \wedge x_{t}$ in $\wedge E$ with each subset $X=\left\{x_{1}, \ldots, x_{t}\right\} \subseteq E$.

Suppose $I(M)$ to be an ideal generated by $\left\{\partial\left(e_{C}\right): C\right.$ is a circuit of M with $\left.|C| \geqslant 2\right\} \cup\{e$: e is a loop od $M\}$. Then the Orlik-Solomon algebra of M is defined as

$$
\begin{equation*}
O S(M)=(\bigwedge E) / I(M) \tag{4.1}
\end{equation*}
$$

Theorem 4.1 (NBC basis theorem for the Orlik-Solomon algebra [1], [13]) Let M be a matroid on E, and ω be an arbitrary linear order on the underlying set. Then $\left\{e_{X}: X \in N B C(M, \omega)\right\}$ is a linear basis of module $O S(M)$.

4.2 Convex Geoemtry

Suppose K to be a loop-free convex geometry on $E=\left\{e_{1}, \ldots, e_{n}\right\}$. The graded external algebra $\bigwedge E=$ $\oplus_{i=0}^{n} \bigwedge^{i} E$ and a linear map $\partial: \bigwedge E \longrightarrow \bigwedge E$ are defined in the same way as before. And let $I(K)$ be the ideal in $\bigwedge E$ generated by $\left\{\partial\left(e_{C}\right): C\right.$ is a circuit of $\left.K\right\}$, and let us define an Orlik-Solomon type algebra of a convex geometry K by

$$
\begin{equation*}
O S(K)=(\bigwedge E) / I(K) \tag{4.2}
\end{equation*}
$$

It can be shown that $\left\{e_{X}: X \in N B C(K)\right\}$ is a linear generating set of $O S(K)$. That is, although the NBC basis theorem (Theorem 4.1) does not hold for $O S(K)$, we have a weaker form, the NBC generating theorem, below.

Theorem 4.2 An arbitrary element in $O S(K)$ can be represented as a linear combination of the terms in $\left\{e_{X}: X \in N B C(K)\right\}$.

There is an alternative definition of an Orlik-Solomon type algebra so that the NBC basis theorem would be satisfied. Let $J(K)$ be the ideal generated by $\left\{e_{X}: X\right.$ is a broken circuit of $\left.K\right\}$, and let us define an algebra

$$
\begin{equation*}
A(K)=(\bigwedge E) / J(K) \tag{4.3}
\end{equation*}
$$

By definition $\left\{e_{X}: X \in N B C(K)\right\}$ is necessarily a linear basis of module $A(K)$.
Hence the decomposition of Theorem 3.2 readily implies the short exact split sequence theorem for $A(K)$.

Theorem 4.3 For a coloop x of a convex geometry K,

$$
\begin{equation*}
0 \rightarrow A(K \backslash x) \xrightarrow{i_{x}} A(K) \xrightarrow{p_{x}} A(K / x) \rightarrow 0 \tag{4.4}
\end{equation*}
$$

is an exact short split sequence.
Acknowledgements: The authors thank Prof. M. Hachimori and Dr. Y. Kawahara for their helpful comments.

References

[1] A. Björner, "The homology and shellability of matroids and geometric lattices." in: N. White ed., Matroid Applications, Cambridge Univ. Press, 1992, 226-283.
[2] T. Brylawski, "The broken-circuit complex," Trans. Amer. Math. Soc. 234 (1977) 417-433.
[3] P. H. Edelman, "Abstract convexity and meet-distributive lattices," Contemporary Math. 57 (1986) 127-150.
[4] P. H. Edelman and R. E. Jamison, "The theory of convex-geometries," Geometriae dedicata 19 (1985) 247-270.
[5] P.H. Edelman and V. Reiner, "Counting interior points of a point configuration," Disc. Math. 23 (2000) 1-13.
[6] M. Falk, "Combinatorial and algebraic structure in Orlik-Solomon algebras," Europ. J. Combi. 22 (2001) 687-698.
[7] Y. Kawahara, "On matroids and Orlik-Solomon algebras," Annals of Combinatorics 8 (2004) 63-80.
[8] D. A. Klain, "An Euler relation for valuations on polytopes," Adv. in Math. 147 (1999) 1-34.
[9] B. Korte, L. Lovász and R. Schrader, Greedoids, Springer-Verlag, 1991.
[10] M. Nakamura, "Excluded-minor characterizations of antimatroids arisen from posets and graph searches," Discrete Applied Mathematics 129/2-3 (2003) 487-498.
[11] Y. Okamoto and M. Nakamura, "The forbidden minor characterization of line-search antimatroids of rooted digraphs," Discrete Applied Mathematics 131 (2003) 523-533.
[12] M. Nakamura, "The deletion-contraction rule and Whitney-Rota's formula for the characteristic polynomials of convex geometries," preprint.
[13] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer, 1991.
[14] G.-C. Rota, "On the Foundations of Combinatorial Theory I. Theory of Möbius Functions," Z. Wahrscheinlichkeitstheoreie 2 (1964) 340-368.
[15] G. Ziegler, "Matroid shellability, β-Systems and Affine Hyperplane Arrangements," J. of Algebraic Combinatorics 1 (1992) 283-300.

