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Mader Tools
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The deep theorem of Mader concerning the number of internally disjoint H-paths is a very powerfull tool. Neverthe-
less its use is very difficult, because one has to deal with a very reach family of separators. This paper shows several
ways to strengthen Mader’s theorem by certain additional restrictions of the appearing separators.
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1 Preliminaries and Results
For notations not defined here we refer to (1). Unless otherwise stated, k is an arbitrary integer, G is an
arbitrary finite simple graph (loops and multiple edges are forbidden), U is an arbitrary subgraph of G,
X and H are arbitrary disjoint subsets of V (G) and Y is an arbitrary subset of E(G − X − H). A path
having exactly its endvertices in H is called an H-path. The maximum number of independent H-paths
we denote by pG(H). [Y ] denotes the graph with edge set Y whose vertex set is the set of all vertices
incident with at least one edge of Y . Let C(G) denote the set of components of G and ∂G(U) denote the
set of vertices of U incident with at least one edge of G− E(U). A pair (X, Y ) is called H-separator of
G, if each H-path of G contains a vertex of X or an edge of Y . Let S be the set of all H-separators of
G − E(G[H]). A vertex x′ of G is called big brother of a vertex x of G, if the neighborhood of x′ in G
contains the neighborhood of x in G− x′.

According to (1) we define the permeability of a pair (X, Y ) by:

MG(X, Y ) = |X|+
∑

C∈C([Y ])

⌊
|∂G−X(C)|

2

⌋

Mader’s Theorem (cf. (2)) can be rewritten as follows (cf. (1).)

Theorem 1 (Mader, 1978)

pG(H) = |E(G[H])|+ min{MG(X, Y ) | (X, Y ) ∈ S}
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Note, that here H is a set of vertices. To get this from the version of Mader’s theorem in (1), you have to
apply the version of (1) with the graph G[H] instead of H .

Let a subset S ′ of S be a Mader-Set, whenever Theorem 1 remains valid if S is replaced by S′. In other
words, a subset S ′ of S is a Mader-Set, iff for each element (X, Y ) of S there is an element (X ′, Y ′) of
S ′ with MG(X ′, Y ′) ≤ MG(X, Y ). Note that a subset of S containing a Mader-Set is a Mader-Set, too.

The following conditions for elements (X, Y ) of S will be discussed:

• Odd Border Condition (OB)

For each component C of [Y ] the number |∂G−XC| is odd.

• Big Brother Vertex Condition (BV): If x ∈ X and x′ is a big brother of x, then x′ ∈ X .

• Symmetric Edge Condition (SE): If v and v′ are two vertices of G−H −X such that the neighbor-
hood of v′ in G− v equals the neighborhood of v in G− v′, then the neighborhood of v′ in [Y ]− v
equals the neighborhood of v in [Y ]− v′.

• Edge Component Condition (EC): For each edge e of G − H − X − Y and each component C of
[Y ]∪ (V (G−H −X), ∅) there is a path P in G−X − Y −C containing an element of H and an
endvertex of e.

• Half Border Condition (HB): For each C ∈ [Y ] and each B ⊆ ∂G−XC with 2|B| ≥ |∂G−XC|
there are two vertexdisjoint HB-paths in G−X .

For a subset Q of the set of conditions {OB, BV, BE, EC} let S(Q) be the subset of S satisfying all
conditions in Q. Our main results are as follows:

Theorem 2 S({OB,SE,HB,EC}) is a Mader-Set.

Theorem 3 S({BV,SE,HB,EC}) is a Mader-Set.

Theorem 4 There is a graph G and a subset H of V (G) such that S({OB,BV}) is not a Mader-Set.

In other words, Theorem 2 and Theorem 3 state, that for each graph G and each subset H of V (G) the
set S∗(G, H) of H-separators of G with minimal permeability has (possibly equal) elements (X1, Y1)
and (X2, Y2) such that (X1, Y1) satisfies the Odd Border Condition, the Symmetric Edge Condition,
the Half Border Condition and the Edge Component Condition, and (X2, Y2) satisfies the Big Brother
Vertex Condition, the Symmetric Edge Condition, the Half Border Condition and the Edge Component
Condition.

Theorem 4 states, that there is a graph G and a subset H of V (G), such that none of the elements of
S∗(G, H) satisfies the Odd Border Condition and the Big Brother Vertex Condition.

2 Motivation
Why dealing with such mysterious conditions? The Odd Border Condition helps to simplify the formula
for the permeability of an H separator:

Theorem 5 Let G be a graph, H be a subset of G, and (X, Y ) be an H-separator of G satisfying the
Odd Border Condition. Then for the permeability of (X, Y ) the following equation holds:

MG(X, Y ) = |X|+ |∂G−X [Y ]| − |C([Y ])|
2
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In order to motivate the remaining three conditions, we regard an application of Mader’s Theorem:
Suppose, a function f mapping H into the set of nonnegative integers is given. We are interested in a
’separator-like’ condition for the existence of a set of p independent H-paths such that in the graph U
being the union of all this paths f(h) ≥ dU (h) holds for all h ∈ H . Such a problem appears for instance,
if one wants to prove the f -factor theorem with help of Mader’s Theorem.

Let the graph R(G, f) be obtained from G by the following procedure: Let G′ be the graph obtained
from G by intersecting each edge e of G[H] by a vertex he. In G′ sequentially replace each vertex v of
H by a complete bypartite graph Rv whose partition classes Av and Bv satisfy |Av| = dG(v) + 1 and
|Bv| = f(v). In each step each edge incident with v (say (u, v)) of G′ has to be replaced by an edge
(u, a) with a ∈ Av such that in the resulting graph R(G, f) only one vertex av of Av has all its neighbors
in Bv . We call R(G, f) the f -replacement of G.

The set HR(G, f) = {av|v ∈ H} we call f -replacement of H in G. With this definitions we find the
following lemma:

Lemma 6 G has a set of p independent H-paths such that each vertex v of H is contained in at most
f(v) of this paths if and only if R(G, f) has a set of p independent HR(G, f)-paths.

Using Mader’s Theorem for R(G, f) instead of G and HR(G, f) instead of H we get

Lemma 7 G has a set of p independent H-paths such that each vertex v of H is contained in at most
f(v) of this paths if and only if each HR(G, f)-separator (X, Y ) of R(G, f) satisfies p < p(X, Y ) .

Now, we are nearly done. We have to retranslate this condition to a condition for the graph G, the set
H , and the function f only. To reconstruct G from R(G, f), for each v ∈ H we have to contract the
graph Rv to the vertex v, and after that for each e ∈ E(G[H]) we have to delete he and to add e. But,
without any knowledge about a special structure of HR(G, f)-separators in R(G, f), we loose too much
information by doing the contractions.

The situation changes rapidly, if we first apply Theorem 3 with R(G, f) instead of G and HR(G, f)
instead of H . Using this we prove the following Lemma:

Lemma 8 G has a set of p independent H-paths such that each vertex v of H is contained in at most
f(v) of this paths if and only if each HR(G, f)-separator (X, Y ) of R(G, f) that satisfies the following
conditions also satisfies p < p(X, Y ).

Here are the conditions:
For each element v of H one of the following statements holds:

1. V (Rv) ∩X = Bv and no edge of Y is incident with Av ,

2. V (Rv) ∩X = ∅ and Y contains each edge of R(G, f) incident with Av \ {av}.

3. V (Rv) ∩X = ∅ and no edge of Y is incident with Av .

For each edge e of G[H] we have he ∈ X if and only if for each edge v incident with e the third
statement (V (Rv) ∩X = ∅ and no edge of Y is incident with Av) holds.

By Lemma 8, it is possible to interpret the resulting structure in G, directly. For this, let a pair (X, Y )
be (G, H)-valid, if G−X − Y has no H-path and ∂G−X [Y ] is disjoint to H .

We derive the following Theorem:
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Theorem 9 Given a graph G, a subset H of its vertex set, and a function f that maps H to the set of
non-negative integers.

The maximum number of independent H-paths, for which each vertex v of H is contained in at most
f(v) of this paths, equals the minimum of

|E(G[H \ (X ∪ V ([Y ]))])|+ |X \H|+
∑

x∈H∩X

f(x) +
∑

C∈C([Y ])

1
2

|∂G−XC|+
∑

v∈H∩V (C)

f(v)


taken over all (G, H)-valid pairs (X, Y ).
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