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The deep theorem of Mader concerning the number of internally disjoint H -paths is a very powerfull tool. Neverthe-
less its use is very difficult, because one has to deal with a very reach family of separators. This paper shows several
ways to strengthen Mader’s theorem by certain additional restrictions of the appearing separators.
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1 Preliminaries and Results

For notations not defined here we refer to (1). Unless otherwise stated, k is an arbitrary integer, G is an
arbitrary finite simple graph (loops and multiple edges are forbidden), U is an arbitrary subgraph of G,
X and H are arbitrary disjoint subsets of V' (G) and Y is an arbitrary subset of E(G — X — H). A path
having exactly its endvertices in H is called an H-path. The maximum number of independent H-paths
we denote by pg(H). [Y] denotes the graph with edge set Y whose vertex set is the set of all vertices
incident with at least one edge of Y. Let C(G) denote the set of components of G' and J¢(U) denote the
set of vertices of U incident with at least one edge of G — E(U). A pair (X,Y) is called H-separator of
G, if each H-path of G contains a vertex of X or an edge of Y. Let S be the set of all H-separators of
G — E(G[H]). A vertex =’ of G is called big brother of a vertex z of G, if the neighborhood of z’ in G
contains the neighborhood of z in G — z’.
According to (1) we define the permeability of a pair (X,Y) by:

Mg (X,Y) = |X|+ Z {MJ
cec(ly]

Mader’s Theorem (cf. (2)) can be rewritten as follows (cf. (1).)

Theorem 1 (Mader, 1978)

pe(H) = |E(G[H])| + min{Mg(X,Y) | (X,Y) € S}
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Note, that here H is a set of vertices. To get this from the version of Mader’s theorem in (1), you have to
apply the version of (1) with the graph G[H] instead of H.

Let a subset 8’ of S be a Mader-Set, whenever Theorem 1 remains valid if .S is replaced by S’. In other
words, a subset S’ of S is a Mader-Set, iff for each element (X,Y") of S there is an element (X', Y”) of
S’ with Mg (X', Y’) < Mg(X,Y). Note that a subset of S containing a Mader-Set is a Mader-Set, too.

The following conditions for elements (X, Y") of S will be discussed:

e 0dd Border Condition (OB)
For each component C' of [Y] the number |0g_ x C| is odd.

e Big Brother Vertex Condition (BV): If x € X and 2’ is a big brother of z, then 2’ € X.

o Symmetric Edge Condition (SE): If v and v’ are two vertices of G — H — X such that the neighbor-
hood of v" in G — v equals the neighborhood of v in G — v, then the neighborhood of v’ in [Y] — v
equals the neighborhood of v in [Y] — v'.

e Edge Component Condition (EC): For each edge e of G — H — X — Y and each component C' of
YU (V(G—H —X),0) there is a path P in G — X —Y — C containing an element of H and an
endvertex of e.

e Half Border Condition (HB): For each C' € [Y] and each B C Jg_xC with 2|B| > |0g-xC|
there are two vertexdisjoint H B-paths in G — X.

For a subset ) of the set of conditions {OB, BV, BE, EC} let S() be the subset of S satisfying all
conditions in ). Our main results are as follows:

Theorem 2 S({OB,SE,HB,EC?}) is a Mader-Set.
Theorem 3 S({BV,SE,HB,EC}) is a Mader-Set.
Theorem 4 There is a graph G and a subset H of V(G) such that S({OB,BV}) is not a Mader-Set.

In other words, Theorem 2 and Theorem 3 state, that for each graph G and each subset H of V(G) the
set S*(G, H) of H-separators of G with minimal permeability has (possibly equal) elements (X, Y7)
and (X5,Y3) such that (X;,Y7) satisfies the Odd Border Condition, the Symmetric Edge Condition,
the Half Border Condition and the Edge Component Condition, and (X2, Y>) satisfies the Big Brother
Vertex Condition, the Symmetric Edge Condition, the Half Border Condition and the Edge Component
Condition.

Theorem 4 states, that there is a graph G and a subset H of V(G), such that none of the elements of
S*(G, H) satisfies the Odd Border Condition and the Big Brother Vertex Condition.

2 Motivation
Why dealing with such mysterious conditions? The Odd Border Condition helps to simplify the formula
for the permeability of an H separator:
Theorem 5 Let G be a graph, H be a subset of G, and (X,Y') be an H-separator of G satisfying the
Odd Border Condition. Then for the permeability of (X,Y") the following equation holds:
[Oc—x[Y]| - [C([Y])]
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In order to motivate the remaining three conditions, we regard an application of Mader’s Theorem:
Suppose, a function f mapping H into the set of nonnegative integers is given. We are interested in a
“separator-like’ condition for the existence of a set of p independent H-paths such that in the graph U
being the union of all this paths f(h) > dy (h) holds for all h € H. Such a problem appears for instance,
if one wants to prove the f-factor theorem with help of Mader’s Theorem.

Let the graph R(G, f) be obtained from G by the following procedure: Let G’ be the graph obtained
from G by intersecting each edge e of G[H] by a vertex h.. In G’ sequentially replace each vertex v of
H by a complete bypartite graph R, whose partition classes A, and B, satisfy |4,| = dg(v) + 1 and
|B,| = f(v). In each step each edge incident with v (say (u,v)) of G’ has to be replaced by an edge
(u,a) with a € A, such that in the resulting graph R(G, f) only one vertex a,, of A, has all its neighbors
in B,. We call R(G, f) the f-replacement of G.

The set Hg(G, f) = {av|v € H} we call f-replacement of H in G. With this definitions we find the
following lemma:

Lemma 6 G has a set of p independent H-paths such that each vertex v of H is contained in at most
f(v) of this paths if and only if R(G, f) has a set of p independent Hr (G, f)-paths.

Using Mader’s Theorem for R(G, f) instead of G and Hr (G, f) instead of H we get

Lemma 7 G has a set of p independent H-paths such that each vertex v of H is contained in at most
f(v) of this paths if and only if each Hr (G, f)-separator (X,Y) of R(G, f) satisfiesp < p(X,Y).

Now, we are nearly done. We have to retranslate this condition to a condition for the graph G, the set
H, and the function f only. To reconstruct G from R(G, f), for each v € H we have to contract the
graph R, to the vertex v, and after that for each e € E(G[H]) we have to delete k. and to add e. But,
without any knowledge about a special structure of Hr(G, f)-separators in R(G, f), we loose too much
information by doing the contractions.

The situation changes rapidly, if we first apply Theorem 3 with R(G, f) instead of G and Hr(G, f)
instead of H. Using this we prove the following Lemma:

Lemma 8 G has a set of p independent H-paths such that each vertex v of H is contained in at most
f(v) of this paths if and only if each Hr(G, f)-separator (X,Y) of R(G, [) that satisfies the following
conditions also satisfies p < p(X,Y).

Here are the conditions:

For each element v of H one of the following statements holds:

1. V(R,) N X = B, and no edge of Y is incident with A,,
2. V(R,) N X =0 andY contains each edge of R(G, f) incident with A, \ {a,}.
3. V(R,) N X = 0 and no edge of Y is incident with A,,.

For each edge e of G[H| we have h. € X if and only if for each edge v incident with e the third
statement (V(R,) N X = () and no edge of Y is incident with A,) holds.

By Lemma 8, it is possible to interpret the resulting structure in G, directly. For this, let a pair (X,Y)
be (G, H)-valid, if G — X — Y has no H-path and dg_ x[Y] is disjoint to H.
We derive the following Theorem:
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Theorem 9 Given a graph G, a subset H of its vertex set, and a function f that maps H to the set of
non-negative integers.

The maximum number of independent H-paths, for which each vertex v of H is contained in at most
f(v) of this paths, equals the minimum of

IBGH\ (XUV(IYD)DI+IX\H[+ Y fl@)+ Y % 06-xCl+ > f()

f
z€HNX cec(y)) vEHNV (C)

taken over all (G, H)-valid pairs (X,Y).
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