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We prove that every cubic bridgeless graph G contains a 2-factor which intersects all (minimal) edge-cuts of size 3
or 4. This generalizes an earlier result of the authors, namely that such a 2-factor exists provided that G is planar.
As a further extension, we show that every graph contains a cycle (a union of edge-disjoint circuits) that intersects
all edge-cuts of size 3 or 4. Motivated by this result, we introduce the concept of a coverable set of integers and
discuss a number of questions, some of which are related to classical problems of graph theory such as Tutte’s 4-flow
conjecture or the Dominating circuit conjecture.
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1 Introduction
We study the existence of cycles intersecting all edge-cuts of prescribed sizes in a graph. Throughout
this paper, a cycle in a graph G is a union of edge-disjoint circuits and an edge-cut (in short, a cut) is an
inclusionwise minimal set of edges whose removal increases the number of components of G. Our graphs
are undirected and contain no loops, but they may contain parallel edges.

Our starting point is the main result of [6]:

Theorem 1.1 For any planar graph G, there exists a (not necessarily proper) 2-coloring of V (G) such
that there is no monochromatic circuit of length 3 or 4.

In an equivalent dual form, Theorem 1.1 states that every bridgeless planar cubic graph has a 2-factor
intersecting all cuts of size 3 or 4. (A graph is bridgeless if it is connected and has no bridges.) In the
present paper, we extend the latter result to all bridgeless cubic graphs. Furthermore, we remove the
regularity assumption, proving the following:
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Theorem 1.2 Every graph G has a cycle intersecting all cuts of size 3 or 4.

Motivated by this, we introduce the following concept. Let N be the set of positive integers and A ⊆ N.
We say that a cycle C in a graph G is A-covering if it intersects all cuts T with |T | ∈ A. If Q is a class
of graphs, then A is coverable in Q if every graph from Q contains an A-covering cycle. A set that is
coverable in the class of all graphs is just said to be coverable.

Thus, an equivalent version of Theorem 1.2 is that the set {3, 4} is coverable. Which other sets are
coverable? N itself is not; clearly, a graph has an N-covering cycle if and only if it has a spanning
Eulerian subgraph (spanning closed trail), which is not the case, for instance, for the graph K2,3 (or for
any graph with a bridge). In fact, K2,3 shows that even the set {2} is not coverable.

For a less trivial example of a non-coverable set, consider A = {3, 5} and the Petersen graph P10. For
any vertex v of P10, the edges incident with v constitute a cut as P10 is 3-edge-connected. Since 3 ∈ A,
any A-covering cycle is a 2-factor. Every 2-factor F of P10 is formed by two circuits of length 5. The
complement of F is a cut of size 5 that is not intersected by F . It follows that P10 has no A-covering
cycle.

On the other hand, it may well be that the presence of P10 in a graph G (as a minor) is the only
obstruction to the existence of a {3, 5}-covering cycle in G. Recall that a graph H is a minor of a graph
G if H can be obtained from G by a sequence of edge contractions and edge deletions. The graph G is
Petersen-minor-free (or P10-free) if P10 is not a minor of G. Petersen-minor-free graphs are the subject of
the famous 4-flow conjecture of Tutte [12]. Since we will not need to go into the details of integer flows
(which can be found in [13]), let us state Tutte’s conjecture in a form that does not refer to 4-flows:

Conjecture 1.3 Any P10-free bridgeless graph G contains cycles C1, C2 such that E(G) = E(C1) ∪
E(C2).

Observe that if E(G) is the union of the edge sets of cycles C1 and C2, then C1 is (2N + 1)-covering,
where 2N + 1 = {3, 5, 7, . . .}. Indeed, any odd cut not intersected by C1 cannot be contained in C2, for
the intersection of a cycle and a cut has even size. Conversely, it is not difficult to prove that if G has a
(2N + 1)-covering cycle, then E(G) is the union of edge sets of two cycles. Thus, Conjecture 1.3 can
equivalently be stated in terms of coverability:

Conjecture 1.4 The set 2N + 1 = {3, 5, 7, . . .} is coverable in the class of P10-free graphs.

Observe that Conjecture 1.4 is not restricted to bridgeless graphs. The reason is that any set A ⊆ N
with 1 /∈ A is coverable in the class of bridgeless graphs if and only if it is coverable in the class of all
graphs.

Conjecture 1.3 is well known to be true for planar graphs. Indeed, this special case is equivalent to the
Four Color Theorem (see, e.g., [13]). It follows that 2N + 1 is coverable in the class of planar graphs.

To conclude this section, we point out a relation to another long-standing conjecture. A subgraph H
of a graph G is dominating if each edge of G is incident with a vertex of H . The Dominating circuit
conjecture has several equivalent forms [2, 7, 10]; we state the one due to Fleischner and Jackson [4] (see
Section 2 for a definition of cyclically k-connected graphs):

Conjecture 1.5 Every cyclically 4-edge-connected cubic graph has a dominating circuit.

By Tutte’s theorem [11], Conjecture 1.5 is true for planar graphs. Note that if G is a cyclically 4-edge-
connected cubic graph, then a circuit is dominating in G if and only if it is an (N + 3)-covering cycle,
where N+3 = {4, 5, 6, . . .}. Thus, the following is a generalization of the Dominating circuit conjecture:
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Conjecture 1.6 The set N + 3 is coverable.

A result of Thomassen [9, Theorem 4.1] implies that N + 3 is coverable in the class of planar graphs.
Further questions related to coverable sets are asked in Section 4.

2 Notation and definitions
Let us review the necessary definitions. As mentioned above, the graphs we consider are loopless multi-
graphs. The vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively. If
E = E(G), we write E(v) for the set of edges incident with the vertex v.

Recall that a cut in a connected graph G is a subset C ⊆ E(G) such that G−C is disconnected and C
is minimal with this property. Note that G−C has two components, say, G1 and G2. If any of the graphs
Gi consists of a single vertex, then C is a trivial cut; otherwise C is called non-trivial. Similarly, if any
of the graphs Gi is a tree, then C is an acyclic cut; otherwise C is cyclic. We refer to edge cuts of size k
as k-cuts.

A graph G is cyclically k-edge-connected if |E(G)| > k and G has no cyclic cut of size at most k − 1.
A cycle H is spanning in G if each vertex of G is incident with an edge of H .

3 {3, 4}-covering cycles
By a well-known theorem of Petersen, every bridgeless cubic graph G has a 2-factor. In this section, we
prove a result which implies that in fact, G has a 2-factor which is a {3, 4}-covering cycle. To this end,
we make use of the following extension of the Petersen theorem, due to Schönberger [8]:

Theorem 3.1 Let G be a cubic bridgeless multigraph and e, f ∈ E(G). Then G has a 2-factor containing
both e and f .

Let v be a vertex of degree 4 in a graph G = (V,E). Let Y ⊂ E(v) be a set of size 2 and let X ⊆ E(v)
be an even set (a set of even size). Note that if |X| 6= 2, then X = E(v). We say that X crosses Y if
X ∩ Y 6= ∅ and Y 6= X . Thus, E(v) crosses each of its subsets of size 2.

Example 3.2 If E(v) = {a, b, c, d} and Y = {a, b}, then the even sets which cross Y are {a, c}, {a, d},
{b, c}, {b, d} and {a, b, c, d}.

Let w ∈ V (G). We say that a subgraph H ⊆ G extends a set X ⊆ E(w) if E(H) ∩ E(w) = X .
The following theorem deals with {3, 4}-covering cycles in graphs with maximum degree at most 4,

the focus being on cubic graphs where any such cycle is a 2-factor.

Theorem 3.3 Let G be a 2-connected graph and let v be a vertex of G. Suppose that v is of degree at
most 4 and all the other vertices of G are of degree at most 3.

(a) If v is of degree at most 3, then each set Y ⊂ E(v) with |Y | = 2 can be extended to a {3, 4}-
covering cycle of G.

(b) If v is of degree 4, then there exists a set X ⊂ E(v) of size 2 such that every even set Y ⊆ E(v)
which crosses X can be extended to a {3, 4}-covering cycle of G.

For instance, in the situation of Example 3.2, part (b) of the theorem claims that each of the sets {a, c},
{a, d}, {b, c}, {b, d}, and {a, b, c, d} can be extended to a {3, 4}-covering cycle of G.
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Corollary 3.4 Every bridgeless graph with maximum degree at most 3 has a {3, 4}-covering cycle.

Theorem 3.3 implies the following strengthening of Theorem 3.1:

Corollary 3.5 Every cubic bridgeless graph has a 2-factor which intersects all cuts of size 3 and 4.
Moreover, any two incident edges can be extended to such a 2-factor.

Theorem 1.2 can be easily deduced from Corollary 3.5 using Fleischner’s Splitting Lemma [3].

4 Remarks
By Theorem 1.2, both the sets {3} and {4} are coverable. On the other hand, {1} and {2} are not. How
about the other single-element sets?

Question 4.1 Is it true that for all k ≥ 3, {k} is coverable?

We are unable to say anything for k ≥ 5, except that Conjecture 1.6 clearly implies an affirmative
answer to this question. On the other hand, since (as we noted in Section 1) the conjecture is true for planar
graphs, any set {k} is coverable in the class of planar graphs (which will be denoted by P throughout this
section).

Having determined which sets of size 1 are coverable in P , we may attempt the same for sets of size
2. Let A = {a, b} be a pair of positive integers with a < b. If a ≤ 2 then A is not coverable in P , and
if a ≥ 4, then the planar case of Conjecture 1.6 implies that A is coverable in P . Thus, we may assume
that a = 3. Since the set 2N + 1 = {3, 5, 7, . . .} is coverable in P (by the Four Color Theorem), we may
assume that b is even and b ≥ 6.

Question 4.2 Let k ≥ 3. Is {3, 2k} coverable in P?

In fact, this is an equivalent form of a question posed by Broersma et al. [1] in connection with Theo-
rem 1.1: For which k ≥ 3 can one 2-color the vertices of every planar graph in such a way that there is
no monochromatic circuit of length 3 or 2k? To our knowledge, the question is open. It may even be that
{3, 2k} (k ≥ 3) is coverable in the class of all graphs.

One might speculate that even the set consisting of 3 and all the numbers 2k (k ≥ 2) is coverable. It
can be shown that this is not the case:

Proposition 4.3 The set A = {3, 4, 6, 8, 10, . . .} is not coverable.

Our argument proving Proposition 4.3 uses a non-hamiltonian 3-connected cubic bipartite graph. It
cannot be applied in the class P , for there is no known example of a planar graph with these properties.
Indeed, a well-known conjecture of D. Barnette [5, Section 2.12] states that there is no such graph. Thus,
we conclude our paper with the following question:

Question 4.4 Is {3, 4, 6, 8, 10, . . .} coverable in P?
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