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A canonical basis for Garsia-Procesi modules

Jonah Blasiak1†
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Abstract. We identify a subalgebra Ĥ +
n of the extended affine Hecke algebra Ĥn of type A. The subalgebra Ĥ +

n

is a u-analogue of the monoid algebra of Sn n Zn≥0 and inherits a canonical basis from that of Ĥn. We show that its
left cells are naturally labeled by tableaux filled with positive integer entries having distinct residues mod n, which
we term positive affine tableaux (PAT).

We then exhibit a cellular subquotient R1n of Ĥ +
n that is a u-analogue of the ring of coinvariants C[y1, . . . , yn]/(e1, . . . , en)

with left cells labeled by PAT that are essentially standard Young tableaux with cocharge labels. Multiplying canon-
ical basis elements by a certain element π ∈ Ĥ +

n corresponds to rotations of words, and on cells corresponds to
cocyclage. We further show that R1n has cellular quotients Rλ that are u-analogues of the Garsia-Procesi modules
Rλ with left cells labeled by (a PAT version of) the λ-catabolizable tableaux.

Résumé. On définit une sous-algèbre Ĥ +
n de l’extension affine de l’algèbre de Hecke Ĥn de type A. La sous-

algèbre Ĥ +
n est u-analogue à l’algèbre monoı̈de de SnnZn≥0 et hérite d’une base canonique de Ĥn. On montre que

ses cellules gauches sont naturellement classées par des tableaux remplis d’entiers naturels ayant chacun des restes
différents modulo n, que l’on nomme Positive Affine Tableaux (PAT).

On montre ensuite qu’un sous-quotient cellulaire R1n de Ĥ +
n est une u-analogue de l’anneau des co-invariants

C[y1, . . . , yn]/(e1, . . . , en) avec des cellules gauches classées PAT qui sont essentiellement des tableaux de Young
standards avec des labels cochargés. Multiplier les éléments de la base canonique par un certain élément π ∈ Ĥ +

n

correspond à des rotations de mots, et par rapport aux cellules cela correspond à un cocyclage. Plus loin, on montre
que R1n a pour quotients cellulaires Rλ qui sont u- analogues aux modules de Garsia-Procesi Rλ avec des cellules
gauches définies par (une version PAT) des tableaux λ-catabolisable.
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1 Introduction
It is well-known that the ring of coinvariants R1n = C[y1, . . . , yn]/(e1, . . . , en), thought of as a CSn-
module with Sn acting by permuting the variables, is a graded version of the regular representation.
However, how a decomposition of this module into irreducibles is compatible with multiplication by the
yi remains a mystery.

A precise question one can ask along these lines goes as follows. Let E ⊆ Rd be an Sn-irreducible,
where Rd is the d-th graded part of the polynomial ring R = C[y1, . . . , yn]. Suppose that the isotypic
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component of Rd containing E is E itself. Then define I ⊆ R to be the sum of all homogeneous ideals
J ⊆ R that are left stable under the Sn-action and satisfy J ∩E = 0. The quotient R/I contains E as the
unique Sn-irreducible of top degree d. It is natural to ask

What is the graded character of R/I?

The most familiar examples of such quotients are the Garsia-Procesi modules Rλ (see [5]), which
correspond to the case that E is of shape λ and d = n(λ) =

∑
i(i − 1)λi; refer to this representation

E ⊆ Rn(λ) as the Garnir representation of shape λ or, more briefly, Gλ. Combining the work of Hotta-
Springer (see [6]) and Lascoux [10] (see also [15]) gives the Frobenius series

FRλ(t) =
∑

T∈SY T
ctype(T )Dλ

tcocharge(T )ssh(T ), (1)

where ctype(T ) is the catabolizability of T (see §4).
Though this interpretation of the character of Rλ has been known for some time, the only proofs were

difficult and indirect. One of the goals of this research, towards which we have been partially successful,
was to give a more transparent explanation of the appearance of catabolism in the combinatorics of the
coinvariants.

More recent work suggests that there are other combinatorial mysteries hiding in the ring of coinvari-
ants. We strongly suspect that modules with graded characters corresponding to the k-atoms of Lascoux,
Lapointe, and Morse [9] and a generalization of k-atoms due to Li-Chung Chen [4] sit inside the coinvari-
ants as subquotients. It is also natural to conjecture that the generalization of catabolism due to Shimozono
and Weyman [15] gives a combinatorial description of certain subquotients of the coinvariants which are
graded versions of induction products of Sn-irreducibles.

This paper describes an approach to these problems using canonical bases, which has so far been quite
successful and will hopefully help solve some of the difficult conjectures in this area. After briefly review-
ing Weyl groups, Hecke algebras, and cells (§2), we introduce the central algebraic object of our work,
a subalgebra Ĥ + of the extended affine Hecke algebra which is a u-analogue of the monoid algebra of
Sn n Zn≥0. In §3, we establish some basic properties of this subalgebra and describe its left cells. It turns
out that these cells are naturally labeled by tableaux filled with positive integer entries having distinct
residues mod n, which we term positive affine tableaux (PAT). Our investigations have convinced us that
these are excellent combinatorial objects for describing graded Sn-modules.

After some preparatory combinatorics in §4, we go on to show in §5 that Ĥ + has a cellular quotient
R1n that is a u-analogue of R1n . The module R1n has a canonical basis labeled by affine words that are
essentially standard words with cocharge labels, with left cells labeled by PAT that are essentially standard
tableaux with cocharge labels. Multiplying canonical basis elements by a certain element π ∈ Ĥ +

corresponds to rotations of words, and on left cells corresponds to cocyclage.
In this cellular picture of the coinvariants, Gλ corresponds to a left cell of R1n labeled by a PAT of

shape λ, termed the Garnir tableau of shape λ, again denoted Gλ. In §6, we identify u-analogues Rλ of
the Rλ and show that Rλ is cellular and its left cells are labeled by (a PAT version of) the λ-catabolizable
tableaux.

Detailed proofs as well as conjectures relating cellular subquotients of Ĥ + to k-atoms and Chen’s
atoms and conjectures describing cellular subquotients of Ĥ + outside of R1n are presented in a full
version of this extended abstract [1].



A canonical basis for Garsia-Procesi modules 169

2 Hecke algebras and cells
We begin by briefly reviewing Weyl groups and Hecke algebras, referring the reader to [7] for a thorough
treatment.

LetWf ,Wa,We, Y, Y+ be the finite Weyl group, affine Weyl group, extended affine Weyl group, weight
lattice, and dominant weights associated to the root system specifying the algebraic group GLn(C) (see
[7]). The finite Weyl group Wf is the symmetric group Sn. It acts on the weight lattice Y = Zn =
〈ε1, . . . , εn〉 by permuting coordinates.

Let S = {s1, . . . , sn−1} be the simple reflections of Wf and K = {s0, . . . , sn−1} be those of Wa and
We. The pairs (Wf , S) and (Wa,K) are Coxeter groups, and (We,K) is an extended Coxeter group. The
length function ` and partial order ≤ on Wa extend to We = Π nWa: `(πv) = `(v), and πv ≤ π′v′ if
and only if π = π′ and v ≤ v′, where π, π′ ∈ Π, v, v′ ∈ W . For any J ⊆ K, the parabolic subgroup
WeJ = WaJ is the subgroup of We generated by J . Each left (resp. right) coset wWeJ (resp. WeJw)
of WeJ contains a unique element of minimal length called a minimal coset representative. The set of all
such elements is denoted We

J (resp. JWe).
We will make use of three descriptions of We. First, We = Y oWf ; elements of Y ⊆ We will be

denoted by the multiplicative notation yλ, λ ∈ Y and yi := yεi . Second, We = Π nWa, where Π ∼= Z;
the element π = y1s1s2 . . . sn−1 is a generator of Π. This satisfies the relation πsi = si+1π, where, here
and from now on, the subscripts of the si are taken mod n.

The third description of We, due to Lusztig, identifies it with the group of permutations w : Z → Z
satisfying w(i + n) = w(i) + n and

∑n
i=1(w(i) − i) ≡ 0 mod n. The identification takes si to the

permutation transposing i+ kn and i+ 1 + kn for all k ∈ Z, and takes π to the permutation k 7→ k + 1
for all k ∈ Z. We take the convention of specifying the permutation of an element w ∈We by the word

n+ 1− w−1(1) n+ 1− w−1(2) . . . n+ 1− w−1(n).

We refer to this as the affine word or word of w, and it will be written as w1w2 · · ·wn; this is understood
to be part of an infinite word so that wi = î− i+wî, where ·̂ : Z→ [n] is the map sending an integer i to
the integer in [n] it is congruent to mod n. For example, if n = 4 and w = π2s2s0s1, then the word of w
is 8 3 5 2, thought of as part of the infinite word . . . 12 7 9 6 8 3 5 2 4 -1 1 -2 . . . . We adopt the convention
of writing ab in place of na+ b (a, b ∈ Z). With this convention, the word of w above is written 14 3 11 2.

LetA = Z[u, u−1] be the ring of Laurent polynomials in the indeterminate u. Let H (W ) be the Hecke
algebra of the (extended) Coxeter group W over the ground ring A with standard basis {Tw : w ∈ W}.
Set H = H (Wf ), Ĥ = H (We), which will sometimes be decorated with a subscript n to emphasize
that they correspond to type An−1 or Ãn−1. The Hecke algebra of an extended Coxeter group has the
same relations as the usual Hecke algebra using the length function defined above.

Corresponding to the description Y oWf of We, there is a presentation of Ĥ due to Bernstein. For
any λ ∈ Y there exist µ, ν ∈ Y+ such that λ = µ− ν. Define Y λ := Tyµ(Tyν )−1, which is independent
of the choice of µ and ν. The algebra Ĥ has A-basis

{Y λTw : w ∈Wf , λ ∈ Y }

and is equal to the A-algebra generated by the Yi and Tsi with relations that are fairly simple to describe.

The canonical basis or Kazhdan-Lusztig basis of H (W ) [8] is an A-basis for H (W ), denoted {C ′w :
w ∈ W}, having nice properties for the action of the Hecke algebra on itself. This action is nice because
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certain subsets of the canonical basis called cells give rise to representations that are often irreducible.
Cells can be defined for any H (W )-module E with a distinguished basis Γ: first, the preorder ≤Γ (also
denoted ≤E) on the set Γ is that generated by the relations/edges

δ ←−
Γ
γ

if there is an h ∈H (W ) such that δ appears with non-zero
coefficient in the expansion of hγ in the basis Γ.

(2)

The left cells of Γ (or of E, if Γ ⊆ E is understood) are then the equivalence classes of ≤Γ. The
preorder ≤Γ gives rise to a partial order on left cells, also denoted ≤Γ. A cellular subquotient of E is a
subset Λ of Γ such that there does not exist γ ∈ Γ\Λ and δ, δ′ ∈ Λ satisfying δ ≤Γ γ ≤Γ δ′. A cellular
subquotient of E is necessarily a union of left cells and gives rise to a subquotient of E. We are most
interested in the case where Γ is a W -graph as defined in [8].

3 The positive part of Ĥ

Here we introduce a subalgebra Ĥ + of Ĥ and positive affine tableaux (PAT), which label left cells of
Ĥ +. These play a crucial role in our goal of relating subquotients of R to tableau combinatorics.

The subset Y + := Zn≥0 of the weight lattice Y is left stable under the action of the Weyl group Wf .
Thus Y + oWf is a submonoid of We. We remark that this only works in type A, and this is the main
barrier preventing the results of this paper to be generalized to other types.

Proposition-Definition 3.1 The positive part of We, denoted W+
e , has the following three equivalent

descriptions:
(1) Y + oWf ,
(2) The submonoid of We generated by π and Wf ,
(3) {w ∈We : wi > 0 for all i ∈ [n]}.

The inclusion of monoids W+
e ⊆We gives rise to an inclusion of algebras Ĥ + ⊆ Ĥ :

Proposition-Definition 3.2 The subalgebra Ĥ + of Ĥ has the following four equivalent descriptions:
(i) A{Y λTw : λ ∈ Y +, w ∈Wf},
(ii) A{Tw : w ∈W+

e },
(iii) A{C ′w : w ∈W+

e },
(iv) the subalgebra of Ĥ generated by π and H .

Write ≤
Ĥ + for the preorder on the canonical basis of Ĥ + coming from considering Ĥ + as a left

Ĥ +-module. We say that this canonical basis is the W+
e -graph ΓW+

e
. The preorder ≤

Ĥ + is difficult to
compute, but there are two kinds of easy edges: the edgesC ′πw ≤Ĥ + C ′w, which we refer to as corotation-
edges; the corresponding edges between cells are cocyclage-edges (we will soon see that cocyclage-edges
are a generalization of cocyclage for standard Young tableaux). The edges C ′sw ≤Ĥ + C ′w if sw > w and
s ∈ S are ascent-edges.

The work of Kazhdan and Lusztig [8] shows that the left cells of H are in bijection with the set of
SYT and the left cell containing C ′w corresponds to the insertion tableau of w under this bijection (keep
in mind our unusual convention from §2 for the word of w). The left cell containing those C ′w such that
w has insertion tableau P is the left cell labeled by P , denoted ΓP .
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Definition 3.3 A positive affine tableau (PAT) of size n is a semistandard Young tableau filled with positive
integer entries that have distinct residues mod n.

For w ∈ We, the word w1w2 · · ·wn may be inserted into a tableau, and the result is a tableau, denoted
P (w). It is a positive affine tableau exactly when w ∈ W+

e . Let Q be a positive affine tableau and let
QS be the standard tableau obtained from Q by replacing its entries with the numbers 1, . . . , n so that
the relative order of the entries in Q and QS agree. The set of w ∈ We inserting to Q is {vx : v ∈
Wf and P (v) = QS}, where the word of x is obtained from Q by sorting its entries in decreasing order.
For any x ∈ SWe, define

ΓQ := {C ′vx : v ∈Wf , P (v) = QS} = {C ′w : w ∈We, P (w) = Q}. (3)

By the following result, ΓQ is a left cell of ΓW+
e

, which we refer to as the left cell labeled by Q. The
following is an easy consequence of results of Roichman on restricting W -graphs that originated in the
work of Barbasch and Vogan on primitive ideals (see [14]).

Proposition 3.4 For any x ∈ S
W+
e , the set {C ′wx : w ∈ Wf} is a cellular subquotient of Ĥ +. This set,

restricted to be a Wf -graph, is isomorphic to the Wf -graph on H . In particular,

ΓW+
e

=
⊔

Q∈PAT
ΓQ

is the decomposition of ΓW+
e

into left cells.

4 Cocyclage and catabolism
Before going deeper into the study of the canonical basis of Ĥ +, we introduce combinatorics originating
in [10, 11] (see also [15]) that will be used to describe cellular subquotients of Ĥ +.

The cocharge labeling of a word v, denoted vcc, is a (non-standard) word of the same length as v, and
its numbers are thought of as labels of the numbers of v. It is obtained from v by reading the numbers of
v in increasing order, labeling the 1 of v with a 0, and if the i of v is labeled by k, then labeling the i+ 1
of v with a k (resp. k + 1) if the i + 1 in v appears to the right (resp. left) of the i in v. For example,
the cocharge labeling of 614352 is 302120; also see Example 5.3. Define the cocharge labeling T cc of a
tableau T to be the insertion tableau of vcc for any (every) v inserting to inserting to T .

The sum of the numbers in the cocharge labeling of a standard word v (resp. standard tableau T ) is the
cocharge of v (resp. T ) or cocharge(v) (resp. cocharge(T )).

For a word w and number a 6= 1, aw is a corotation of wa. There is a cocyclage from the tableau T to
the tableau T ′, written T cc−→ T ′, if there exist words u, v such that v is the corotation of u and P (u) = T

and P (v) = T ′. Rephrasing this condition solely in terms of tableaux, T cc−→ T ′ if there exists a corner
square (r, c) of T and uninserting the square (r, c) from T yields a tableau Q and number a such that T ′

is the result of column-inserting a into Q.
The cocyclage poset CCP(SYT) is the poset on the set of SYT generated by the relation cc−→. Similarly,

define CCP(PAT ) to be the poset on the set of PAT generated by cocyclage-edges. The covering relations
of CCP(SYT) (resp. CCP(PAT )) are exactly cocyclages (resp. cocyclage-edges). We consider the
covering relation T cc−→ T ′ to be colored by the following additional datum: the set of outer corners of T
that result in a cocyclage to T ′. Note that this set can only have more than one element if sh(T ) = sh(T ′).
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Catabolizability of standard tableaux is a subtle combinatorial statistic, which we will not define in the
usual way here. In [3], we show that the catabolizability of a standard tableau T , denoted ctype(T ), can
be computed from any word v inserting to T using the following catabolism insertion algorithm.

Algorithm 4.1 (Catabolism insertion) Let f be the function below, which takes a pair consisting of a
(non-standard) word and a partition to another such pair. Let x = ya, y a word and a a number.

f(x, ν) =

{
(y, ν + εa+1) if ν + εa+1 is a partition,
(a+ 1 y, ν) otherwise.

(4)

Given the input standard word v, first determine the cocharge labeling z of v. Next, apply f to (z, ∅)
repeatedly until the word of the pair is empty. Output the partition of this final pair.

Example 4.2 The sequence of word-partition pairs produced by the algorithm run on v = 1 6 8 4 2 9 5 7 3
is (reading from left to right and then top to bottom)

(023103120, ∅) (02310312, (1)) (30231031, (1)) (3023103, (1, 1)) (4302310, (1, 1))
(430231, (2, 1)) (43023, (2, 2)) (44302, (2, 2)) (4430, (2, 2, 1)) (443, (3, 2, 1))
(44, (3, 2, 1, 1)) (4, (3, 2, 1, 1, 1)) (5, (3, 2, 1, 1, 1)) (∅, (3, 2, 1, 1, 1, 1))

5 A W+
e -graph version of the coinvariants

We exhibit a cellular subquotient R1n of Ĥ + which is a W+
e -graph version of the ring of coinvariants

R1n . Under a natural identification of the left cells of R1n with SYT, the subposet of ≤R1n
consisting of

the cocyclage-edges is exactly the cocyclage poset on SYT.
There are two important theorems that give the canonical basis of Ĥ a more explicit description.
The dominant weights Y+ are weakly decreasing n-tuples of integers; put Y +

+ = Y + ∩ Y+. As is
customary, let w0 denote the longest element of Wf . If λ ∈ Y+, then w0y

λ is maximal in its double coset
Wfy

λWf . For λ ∈ Y +
+ , let sλ(Y ) ∈ Ĥ denote the Schur function of shape λ in the Bernstein generators

Yi.

Theorem 5.1 (Lusztig [12, Proposition 8.6]) For any λ ∈ Y +
+ , the canonical basis element C ′w0yλ

can
be expressed in terms of the Bernstein generators as

C ′w0yλ
= sλ(Y )C ′w0

= C ′w0
sλ(Y ).

Let v be an element of Wf , thought of as a standard word. Thinking of the cocharge labeling vcc as an
element of Y +, let D ⊂ Y + denote the set of cocharge labelings, which is in bijection with Wf . The set
{yβ : β ∈ D} are the descent monomials. Next, put

DS := {yβv : β ∈ D and v ∈Wf such that yβv is minimal in yβWf},
DSw0 := {yβv : β ∈ D and v ∈Wf such that yβv is maximal in yβWf}.

(5)

The set DSw0 will index a canonical basis of the coinvariants.
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Proposition 5.2 There is a bijection Wf → DSw0, v 7→ w, defined by setting the word of w to be
wi = nvcc

i + vi. Its inverse has the two descriptions

wS ← [ w (6)
ŵ1ŵ2 . . . ŵn ← [ w (7)

where ŵi is the residue of wi as defined in §2 and wS is the standard word such that the relative order of
the entries in wS and w agree.

Example 5.3 For the v ∈ S9 given by its word below, the corresponding vcc and w follow.

v = 1 6 8 4 2 9 5 7 3,
vcc = 0 2 3 1 0 3 1 2 0,

w = nvcc + v = 1 26 38 14 2 39 15 27 3.

As preparation for the next theorem, we have a proposition giving the factorization of any w ∈ W+
e

with w maximal in wWf in terms of descent monomials.

Proposition 5.4 ([2, Proposition 3.7]) For any w ∈ W+
e such that w is maximal in wWf , there is a

unique expression for w of the form
w = u · w0y

λ,

where u ∈ DS and λ ∈ Y +
+ .

The next theorem simplifying the canonical basis of Ĥ + is a special case of a result of Xi ([17, Corol-
lary 2.11]), also found independently by the author. We state here a combination of Lusztig’s theorem
(Theorem 5.1) and Xi’s theorem.

Theorem 5.5 For w = u · w0y
λ as in Proposition 5.4, we have the factorization

C ′w = sλ(Y )C ′uw0
.

Remark 5.6 The general version of this theorem holds for the entire lowest two-sided cell of We and
in arbitrary type. The general version for type A is used in the full version of this paper [1] to prove
analogues of the results below for Ĥ +, rather than just Ĥ +e+.

Let e+ = C ′w0
. Then Ae+ is the one-dimensional trivial left-module of H in which the Ti act by u for

i ∈ [n − 1]. The Ĥ +-module Ĥ +e+ = Ĥ + ⊗H e+ is a u-analogue of the polynomial ring R. It can
be identified with the cellular submodule of Ĥ + spanned by {C ′w : w maximal in wWf}.

Let R denote the subalgebra of Ĥ + generated by the Bernstein generators Yi. It is known that R ∼= R

as algebras. Write (Y +)
Wf

≥d ⊆ R for the set of Wf -invariant polynomials of degree at least d. Now

Theorem 5.5 applied to the canonical basis of Ĥ +e+ yields the following corollary, which gives a u-
analogue of the ring of coinvariants.

Corollary 5.7 The Ĥ +
n -module Ĥ +

n e+ has a cellular quotient equal to

R1n := Ĥ +
n e+/Ĥ +

n (Y +)Sn≥1e
+

with canonical basis {C ′w : w ∈ DSw0}.
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Fig. 1: On the left is the W+
e -graph of R13 with three labels for each canonical basis element. The bottom labels are

affine words. On the right are the corresponding left cells and the partial order ≤R
13

on left cells.

Example 5.8 The W+
e -graph R13 is drawn in Figure 1. Arrows indicate relations in the preorder ≤R1n

and those with a downward component are exactly the corotation-edges. Figure 2 depicts the left cells of
the W+

e -graph on R15 and the partial order ≤R15
on left cells.

These examples and the next proposition show that the partial order ≤R1n
contains strictly more infor-

mation than the cocyclage poset on SYT.
Let CCP(R1n) be the subposet of CCP(PAT ) on the set of tableaux corresponding to the cells of

R1n and let T + T ′ denote the entry-wise sum of two tableau T, T ′ of the same shape. Using Proposition
5.2, we deduce the following

Proposition 5.9 The map CCP(SY T )→ CCP(R1n), T 7→ nT cc+T is a color-preserving isomorphism
of cocyclage posets.

For a PAT P labeling a cell of R1n , let ctype(P ) be ctype(T ), where T is the SYT corresponding to
P in the bijection above.

6 A W+
e -graph version of the Garsia-Procesi modules

The Garsia-Procesi approach to understanding the Rλ = R/Iλ realizes Iλ as the ideal of leading forms of
functions vanishing on an orbit Sna, for certain a ∈ Cn = SpecR. We adapt this approach to the Hecke
algebra setting using certain representations of Ĥ studied by Bernstein and Zelevinsky in order to prove
our main result, Theorem 6.6, which shows that the u-analogues Rλ of the Rλ are actually cellular.

Let CZn (resp. C+Z
n ) be the category of finite-dimensional Ĥn-modules (resp. Ĥ +

n -modules) in which
the Yi’s have their eigenvalues in u2Z. See [16] for many of the known results about the category CZn .
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Fig. 2: The cells of the W+
e -graph on R15 . Edges are the covering relations of the partial order on cells.
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For η = (η1, η2, . . . , ηr) an r-composition of n, write lj =
∑j−1
i=1 ηi, j ∈ [r+ 1] for the partial sums of

η (where the empty sum is defined to be 0). Let Bj be the interval [lj + 1, lj+1], j ∈ [r], and define

Jη = {si : {i, i+ 1} ⊆ Bj for some j} (8)

so that SnJη ∼= Sη1 × · · · × Sηr .

Let Ĥ +
η
∼= Ĥ +

η1 × · · · × Ĥ +
ηr be the subalgebra of Ĥ + generated by HJη and Yi, i ∈ [n]. For

a = (a1, . . . , ar) ∈ Zr, let Cη,a be the 1-dimensional representation of Ĥ +
η on which HJη ⊆ Ĥ +

η acts
trivially (Ti acts by u for si ∈ Jη) and Yli+1 acts by u2ai , i ∈ [r]. The relations in Ĥ +

η demand that
Yli+k acts by u2(ai−k+1) for li + k ∈ Bi.

Next define Mη,a to be the induced module

Mη,a = Ĥ +
n ⊗Ĥ +

η
Cη,a. (9)

For M in C+Z
n , the points of M are the joint generalized eigenspaces for the action of the Yi. The

coordinates of a point v of M is the tuple (c1, . . . , cn) of generalized eigenvalues, also identified with the
word c1 c2 · · · cn. The next proposition follows from a special case of well-known results about CZn .

Proposition 6.1 If the intervals [ai − ηi, ai] are disjoint, then the points of Mη,a are 1-dimensional and
are the shuffles of the words

u2a1 u2(a1−1) · · ·u2(a1−η1), u2a2 · · ·u2(a2−η2), . . . , u2ar u2(ar−1) · · ·u2(ar−ηr).

An essential part of the Garsia-Procesi approach is that the ideal of leading forms of functions vanishing
on Sna affords the same Sn-representation as the ideal of functions vanishing on Sna. The analogous fact
in this setting is

Proposition 6.2 Let Mη,a be as above. If Mη,a is irreducible, then it contains an element v+ such that,
setting N = Ann v+, Ĥ +e+/Ne+ ∼= Mη,a as Ĥ +-modules. It follows that Ĥ +e+/gr(N)e+ ∼=
Ĥ +e+/Ne+ ∼= Mη,a as H -modules.

The ideals Iλ are generated by certain elementary symmetric functions in subsets variables, also known
as Tanisaki generators (see [5, 6]). By the next theorem, certain C ′w ∈ R1n are essentially these genera-
tors. This will relate the ideals gr(AnnMη,a)e+ to the canonical basis of Ĥ +e+.

Theorem 6.3 For k, d ∈ [n] such that d ≤ k, let w be the maximal element of yk−d+1yk−d+2 . . . ykWf .
Then

C ′w = ud(k−n)s1d(Y1, . . . , Yk)C ′w0
. (10)

Suppose d, k ∈ [n], d ≤ k. Consider the following property of a partition λ ` n:

d > k − n+ λ′1 + · · ·+ λ′n−k, (11)

where λ′ is the partition conjugate to λ.
A result of Garsia-Procesi ([5, Proposition 3.1]) carries over to this setting virtually unchanged. For a

composition η, let η+ denote the partition obtained from η by sorting its parts in decreasing order.
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Proposition 6.4 Suppose η is an r-composition of n with λ := η+, and k, d ∈ [n], d ≤ k, such that (11)
holds. If Mη,a satisfies the hypotheses of Proposition 6.1, then

s1d(Y1, . . . , Yk) ∈ gr(AnnMη,a).

For h ∈ Ĥ +, write [C ′w]h for the coefficient of C ′w of h written as an A-linear combination of {C ′w :

w ∈W+
e }. Define 〈, 〉λ : Ĥ + × Ĥ +e+ → A by

〈h1, h2〉λ = [C ′gλ ]h1h2, (12)

where gλ is the row reading word of Gλ.
Through the work of Kazhdan-Lusztig and Beilinson-Bernstein-Deligne-Gabber we know (see, for

instance, [13]) that the structure coefficients of the C ′’s are nonnegative. Using this, we prove

Corollary 6.5 If γ ∈ Ipair
λ , γ ∈ ΓW+

e
, then δ ≤

Ĥ + γ (δ ∈ ΓW+
e

) implies δ ∈ Ipair
λ , i.e., the cellular

submodule generated by γ is contained in Ipair
λ .

We now come to our main result.

Theorem 6.6 SupposeMη,a satisfies the hypotheses of Propositions 6.1 and 6.2 and maintain the notation
of Proposition 6.2. Then the following submodules of Ĥ +e+ are equal.

(i) Io
λ := gr(Ann v+)e+,

(ii) IT
λ := Ĥ +{s1d(Y1, . . . , Yk) : d, k, λ satisfy (11)}e+,

(iii) Ipair
λ := {v ∈ Ĥ +e+ : 〈Ĥ +, v〉λ = 0},

(iv) Icell
λ := The maximal cellular submodule of Ĥ +e+ not containing ΓGλ ,

(v) Icat
λ := A{C ′w : ctype(P (w)) D λ}.

The abbreviations o, T, pair, are shorthand for orbit, Tanisaki, and pairing. Also note that modules
Mη,a satisfying the hypotheses of Propositions 6.1 and 6.2 exist by the general theory. For instance, if
|ai − aj | >> 0 for all i 6= j, then these hypotheses are satisfied.

Proof sketch: The inclusion IT
λ ⊆ Io

λ follows from Proposition 6.4. An argument of a similar flavor to
Proposition 6.4 together with Proposition 6.2 yields Io

λ ⊆ I
pair
λ . Next, the inclusion IT

λ ⊆ I
pair
λ together

with Theorem 6.3 and Corollary 6.5 show that IT
λ is cellular, implying IT

λ ⊆ Icell
λ . It follows from the

catabolism insertion algorithm (Algorithm 4.1) for anyw satisfying ctype(P (w)) D λ, there is a sequence
of ascent-edges and corotation-edges from w to gλ . This proves Icell

λ ⊆ Icat
λ . Finally, a dimension

counting argument using the u = 1 results of Garsia-Procesi and Bergeron-Garsia (see [6]) and the
standardization map of Lascoux (see [15]) completes the proof. 2

Given the theorem, define Rλ to be Ĥ +e+/Iλ for Iλ equal to any (all) of the submodules above. By
description (iv), Rλ is the minimal cellular quotient of Ĥ +e+ containing ΓGλ . By description (iii) and
the description of Rλ from the introduction, Rλ is a u-analogue of Rλ.
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