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Relative Node Polynomials for Plane Curves

Florian Block†

Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

Abstract. We generalize the recent work of Fomin and Mikhalkin on polynomial formulas for Severi degrees.

The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is
fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves which,
in addition, satisfy tangency conditions of given orders with respect to a given line. We show that the degrees of these
varieties, appropriately rescaled, are given by a combinatorially defined “relative node polynomial” in the tangency
orders, provided the latter are large enough. We describe a method to compute these polynomials for arbitrary δ, and
use it to present explicit formulas for δ ≤ 6. We also give a threshold for polynomiality, and compute the first few
leading terms for any δ.

Résumé. Nous généralisons les travaux récents de Fomin et Mikhalkin sur des formules polynomiales pour les degrés
de Severi.

Le degré de la variété de Severi des courbes planes de degré d et à δ nœuds est donné par un polynôme en d, pour δ
fixé et d assez grand. Nous étendons ce résultat aux variétés de Severi généralisées paramétrant les courbes planes et
qui, en outre, satisfont à des conditions de tangence d’ordres donnés avec une droite fixée. Nous montrons que les
degrés de ces variétés, rééchelonnés de manière appropriée, sont donnés par un “polynôme de noeud relatif”, défini
combinatoirement, en les ordres de tangence, dès que ceux-ci sont assez grands. Nous décrivons une méthode pour
calculer ces polynômes pour delta arbitraire, et l’utilisons pour présenter des formules explicites pour δ ≤ 6. Nous
donnons aussi un seuil pour la polynomialité, et calculons les premiers termes dominants pour tout δ.
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1 Introduction and Main Results
The Severi degree Nd,δ is the degree of the Severi variety of (possibly reducible) nodal plane curves of
degree dwith δ nodes. Equivalently,Nd,δ is the number of such curves passing through (d+3)d

2 −δ generic
points in the complex projective plane CP2. Severi varieties have received considerable attention since
they were introduced by F. Enriques [Enr12] and F. Severi [Sev21] around 1915. Much later, in 1986,
J. Harris [Har86] achieved a celebrated breakthrough by showing their irreducibility.

In 1994, P. Di Francesco and C. Itzykson [DFI95] conjectured that the numbers Nd,δ are given by a
polynomial in d, for a fixed number of nodes δ, provided d is large enough. S. Fomin and G. Mikhalkin
[FM10, Theorem 5.1] established this polynomiality in 2009. More precisely, they showed that there
exists, for every δ ≥ 1, a node polynomial Nδ(d) which satisfies Nd,δ = Nδ(d) for all d ≥ 2δ.
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The polynomiality of Nd,δ and the polynomials Nδ(d) were known in the 19th century for δ = 1, 2, 3.
For δ = 4, 5, 6, this was only achieved by I. Vainsencher [Vai95] in 1995. In 2001, S. Kleiman and
R. Piene [KP04] settled the cases δ = 7, 8. In [Blo11], the author computed Nδ(d) for δ ≤ 14 and
improved the threshold of S. Fomin and G. Mikhalkin by showing that Nd,δ = Nδ(d) provided d ≥ δ.

Severi degrees can be generalized to incorporate tangency conditions to a fixed line L ⊂ CP2. More
specifically, the relative Severi degree Nδ

α,β is the number of (possibly reducible) nodal plane curves with
δ nodes which have tangency of order i to L at αi fixed points (chosen in advance) and tangency of order i
to L at βi unconstrained points, for all i ≥ 1, and which pass through an appropriate number of generic
points. Equivalently, Nδ

α,β is the degree of the generalized Severi variety studied in [CH98, Vak00]. By
Bézout’s Theorem, the degree of a curve with tangencies of order (α, β) equals d =

∑
i≥1 i(αi + βi).

The number of point conditions (for a potentially finite count) is (d+1)d
2 − δ+ β1 + β2 + · · · . We recover

non-relative Severi degrees by specializing to α = (0, 0, . . . ) and β = (d, 0, 0, . . . ). The numbers Nδ
α,β

are determined by the rather complicated Caporaso-Harris recursion [CH98].
In this paper, we show that much of the story of (non-relative) node polynomials carries over to relative

Severi degrees. Our main result is that, up to a simple combinatorial factor and for fixed δ ≥ 0, the
relative Severi degrees Nδ

α,β are given by a multivariate polynomial in α1, α2, . . . , β1, β2, . . . , provided
that β1 + β2 + . . . is sufficiently large. For a sequence α = (α1, α2, . . . ) of non-negative integers with
finitely many αi non-zero we write

|α| def
= α1 + α2 + · · · , α!

def
= α1! · α2! · · · · .

Throughout the paper we use the grading deg(αi) = deg(βi) = 1 (so that d and |β| are homogeneous of
degree 1). The following is our main result.

Theorem 1.1 For every δ ≥ 0, there is a combinatorially defined polynomialNδ(α1, α2, . . . ;β1, β2, . . . )
of (total) degree 3δ such that, for all α1, α2, . . . , β1, β2, . . . with |β| ≥ δ, the relative Severi degree Nδ

α,β

is given by

Nδ
α,β = 1β12β2 · · · (|β| − δ)!

β!
·Nδ(α1, α2, . . . ;β1, β2, . . . ). (1.1)

We call Nδ(α;β) the relative node polynomial and use the same notation as in the non-relative case
if no confusion can occur. We do not need to specify the number of variables in light of the following
stability condition.

Theorem 1.2 For δ ≥ 0 and vectors α = (α1, . . . , αm), β = (β1, . . . , βm′) with |β| ≥ δ, it holds that

Nδ(α, 0;β) = Nδ(α;β) and Nδ(α;β, 0) = Nδ(α;β)

as polynomials. Therefore, there exists a formal power series N∞δ (α;β) in infinitely many variables
α1, α2, . . . , β1, β2, . . . which specializes to all relative node polynomials under αm+1 = αm+2 = · · · =
0 and βm′+1 = βm′+2 = · · · = 0, for various m,m′ ≥ 0.

In fact, even more is true.

Proposition 1.3 For δ ≥ 0 the relative node polynomial Nδ(α, β) is a polynomial in d, |β|, α1, . . . , αδ ,
and β1, . . . , βδ , where d =

∑
i≥1 i(αi + βi).

Using the combinatorial description we provide a method for computing the relative node polynomials
for arbitrary δ (see Sections 3 and 4). We utilize it to compute Nδ(α;β) for δ ≤ 6. The polynomials N0

and N1 already appeared (implicitly) in [FM10, Section 4.2].
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Theorem 1.4 The relative node polynomials Nδ(α;β), for δ ≤ 3 (resp., δ ≤ 6) are as listed in [Blo10,
Appendix A] (resp., as provided in the ancillary files accompanying [Blo10]).

The polynomial Nδ(α;β) is of degree 3δ by Theorem 1.1. We compute its terms of degree ≥ 3δ − 2.

Theorem 1.5 The terms of Nδ(α;β) of (total) degree ≥ 3δ − 2 are given by

Nδ(α; β) =
3δ

δ!

[
d
2δ|β|δ +

δ

3

[
−

3

2
(δ − 1)d

2 − 8d|β| + |β|α1 + dβ1 + |β|β1

]
d
2δ−2|β|δ−1

+

+
δ

9

[ 3

8
(δ − 1)(δ − 2)(3δ − 1)d

4
+ 12δ(δ − 1)d

3|β| + (11δ + 1)d
2|β|2+

−
3

2
δ(δ − 1)(d

3
β1 + d

2|β|α1) −
1

2
(δ + 5)(3δ − 2)d

2|β|β1 − 8(δ − 1)(d|β|2α1 + d|β|2β1)+

+
1

2
(δ − 1)(d

2
β

2
1 + |β|2α2

1 + |β|2β2
1) + (δ − 1)(d|β|α1β1 + d|β|β2

1 + |β|2α1β1)
]
d
2δ−4|β|δ−2

+ · · ·
]
,

where d =
∑
i≥1 i(αi + βi).

Theorem 1.5 can be extended to terms of Nδ(α, β) of degree ≥ 3δ − 7 (see Remark 5.2). We observe
that all coefficients of Nδ(α;β) in degree ≥ 3δ − 2 are of the form 3δ

δ! times a polynomial in δ. Without
computating the coefficients, we can extended this further. It is conceivable to expect this property to hold
for arbitrary degrees.

Proposition 1.6 Every coefficient of Nδ(α;β) in degree ≥ 3δ − 7 is given, up to a factor of 3δ

δ! , by a
polynomial in δ with rational coefficients.

Our approach to planar enumerative geometry is combinatorial and inspired by tropical geometry, a
piecewise-linear analogue of algebraic geometry (see, for example, [Gat06]). By the celebrated Corre-
spondence Theorem of G. Mikhalkin [Mik05, Theorem 1] one can replace the algebraic curve count in
CP2 by an enumeration of certain tropical curves. E. Brugallé and G. Mikhalkin [BM07, BM09] in-
troduced a class of decorated graphs, called (marked) floor diagrams (see Section 2), which, if counted
correctly, are equinumerous to such tropical curves. We use a version of these results which incorpo-
rates tangency conditions due to S. Fomin and G. Mikhalkin [FM10] (see Theorem 2.4). S. Fomin and
G. Mikhalkin also introduced a template decomposition of floor diagrams which we extend to be suitable
for the relative case. This decomposition is crucial in the proofs of all results in this paper, as is the
reformulation of algebraic curve counts in terms of floor diagrams.

For some related work see [AB10], where F. Ardila and the author generalized the polynomiality of
Severi degrees to a class of toric surfaces which contains CP1 × CP1 and Hirzebruch surfaces but which
are non-smooth in general. A main feature is that we show polynomiality not only in the multi-degree
of the curves but also in the parameters of the surface. In [BGM11], A. Gathmann, H. Markwig and
the author defined Psi-floor diagrams which enumerate plane curves which satisfy point and tangency
conditions, and conditions given by Psi-classes. We proved a Caporaso-Harris type recursion for Psi-floor
diagrams, and show that relative descendant Gromov-Witten invariants equal their tropical counterparts.

This paper is organized as follows. In Section 2 we review the definition of floor diagrams and their
markings. In Section 3 we introduce a new decomposition of floor diagrams which is compatible with
tangency conditions. In Section 4 we discuss Theorems 1.1,1.2, 1.4 and Proposition 1.3. In Section 5 we
discuss Theorem 1.5 and Proposition 1.6. For complete proofs of all statements see [Blo10].

Acknowledgements
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2 Floor diagrams and relative markings
Floor diagrams are a class of decorated graphs which, if counted with appropriate multiplicity, enumerate
plane curves with prescribed properties. They were introduced by E. Brugallé and G. Mikhalkin [BM07,
BM09] in the non-relative case and generalized to the relative setting by S. Fomin and G. Mikhalkin
[FM10]. We begin with a review of the relative setup following notation of [FM10].

Definition 2.1 A floor diagram D on a vertex set {1, . . . , d} is a directed graph (possibly with multiple
edges) with edge weights w(e) ∈ Z>0 satisfying:

1. The edge directions preserve the vertex order, i.e., for each edge i→ j of D we have i < j.

2. (Divergence Condition) For each vertex j of D:

div(j)
def
=

∑
edges e

j
e→ k

w(e)−
∑
edges e

i
e→ j

w(e) ≤ 1.

This means that at every vertex of D the total weight of the outgoing edges is larger by at most 1 than the
total weight of the incoming edges.

The degree of a floor diagram D is the number of its vertices. It is connected if its underlying graph
is. Note that in [FM10] floor diagrams are required to be connected. If D is connected its genus is
the genus of the underlying graph (or the first Betti number of the underlying topological space). The
cogenus of a connected floor diagram D of degree d and genus g is given by δ(D) = (d−1)(d−2)

2 −
g. If D is not connected let d1, d2, . . . and δ1, δ2, . . . be the degrees and cogenera, respectively, of its
connected components. Then the cogenus of D is δ(D) =

∑
j δj +

∑
j<j′ djdj′ . Via the correspondence

between algebraic curves and floor diagrams [BM09, Theorem 2.5] these notions correspond literally
to the respective analogues for algebraic curves. Connectedness corresponds to irreducibility. Lastly, a
marked floor diagram D has multiplicity(i)

µ(D)
def
=
∏

edges e

w(e)2.

We draw floor diagrams using the convention that vertices in increasing order are arranged left to right.
Edge weights of 1 are omitted.

Example 2.2 An example of a floor diagram of degree d = 4, genus g = 1, cogenus δ = 2, divergences
1, 1, 0,−2, and multiplicity µ = 4 is drawn below.

2

To enumerate algebraic curves with floor diagrams we need the notion of markings of such diagrams.
Our notation, which is more convenient for our purposes, differs slightly from [FM10] where S. Fomin and
G. Mikhalkin define relative markings relative to the partitions λ = 〈1α12α2 · · · 〉 and ρ = 〈1β12β2 · · · 〉.
In the sequel, all sequences are sequences of non-negative integers with finite support.

Definition 2.3 For two sequences α, β we define an (α, β)-marking of a floor diagram D of degree d=∑
i≥1i(αi+βi) by the following four step process which we illustrate in the case of Example 2.2 for

α = (1, 0, 0, . . . ) and β = (1, 1, 0, 0, . . . ).
Step 1: Fix a pair of collections of sequences ({αi}, {βi}), where i runs over the vertices of D, with:

(i) If floor diagrams are viewed as floor contractions of tropical plane curves this corresponds to the notion of multiplicity of tropical
plane curves.
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1. The sums over each collection satisfy
∑d
i=1 α

i = α and
∑d
i=1 β

i = β.

2. For all vertices i of D we have
∑
j≥1 j(α

i
j + βij) = 1− div(i).

The second condition says that the “degree of the pair (αi, βi)” is compatible with the divergence at
vertex i. Each such pair ({αi}, {βi}) is called compatible with D and (α, β). We omit writing down
trailing zeros. 2

αi = (1)

βi = (1) (0, 1)

Step 2: For each vertex i ofD and every j ≥ 1 create βij new vertices, called β-vertices and illustrated
as , and connected them to i with new edges of weight j directed away from i. For each vertex i of D
and every j ≥ 1 create αij new vertices, called α-vertices and illustrated as , and connected them to i
with new edges of weight j directed away from i.

2

αi = (1)

βi = (1) (0, 1)

2

Step 3: Subdivide each edge of the original floor diagram D into two directed edges by introducing a
new vertex for each edge. The new edges inherit weights and orientations. Call the resulting graph D̃.

2 2
2

Step 4: Linearly order the vertices of D̃ extending the order of the vertices of the original floor diagram
D such that, as in D, each edge is directed from a smaller vertex to a larger vertex. Furthermore, we
require that the α-vertices are largest among all vertices, and for every pair of α-vertices i′ > i, the
weight of the i′-adjacent edge is larger than or equal to the weight of the i-adjacent edge.

2 2

2
We call the extended graph D̃, together with the linear order on its vertices, an (α, β)-marked floor

diagram, or an (α, β)-marking of the floor diagram D.

We need to count (α, β)-marked floor diagrams up to equivalence. Two (α, β)-markings D̃1, D̃2 of
a floor diagram D are equivalent if there exists a weight preserving automorphism of weighted graphs
mapping D̃1 to D̃2 which fixes the vertices of D. The number of markings να,β(D) is the number
of (α, β)-marked floor diagrams D̃ up to equivalence. Furthermore, we write µβ(D) for the product
1β12β2 · · ·µ(D). The next theorem follows from [FM10, Theorem 3.18] by a straight-forward extension
of the inclusion-exclusion procedure of [FM10, Section 1] which was used to conclude [FM10, Corol-
lary 1.9] (the non-relative count of reducible curves via floor diagrams) from [FM10, Theorem 1.6] (the
non-relative count of irreducible curves via floor diagrams).

Theorem 2.4 For any δ ≥ 1, the relative Severi degree Nδ
α,β is given by

Nδ
α,β =

∑
D
µβ(D)να,β(D),

where the sum is over (possibly disconnected) floor diagrams D of degree d =
∑
i≥1 i(αi + βi) and

cogenus δ.
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3 Relative Decomposition of Floor Diagrams
In this section we introduce a new decomposition of floor diagrams compatible with tangency conditions.
It is crucial in the proofs of all results stated in Section 1. The new decomposition is an extension of ideas
of S. Fomin and G. Mikhalkin [FM10]. We start out by reviewing their key gadget.

Definition 3.1 A template Γ is a directed graph (possibly with multiple edges) on vertices {0, . . . , l},
where l ≥ 1, and edge weights w(e) ∈ Z>0, satisfying:

1. If i→ j is an edge then i < j.

2. Every edge i e→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

3. For each vertex j, 1 ≤ j ≤ l − 1, there is an edge “covering” it, i.e., there exists an edge i → k
with i < j < k.

Every template Γ comes with some numerical data associated with it. Its length l(Γ) is the number of
vertices minus 1. The product of squares of the edge weights is its multiplicity µ(Γ). Its cogenus δ(Γ) is

δ(Γ)
def
=
∑
e

i→j

[
(j − i)w(e)− 1

]
.

For 1 ≤ j ≤ l(Γ) let κj = κj(Γ) denote the sum of the weights of edges i e→ k with i < j ≤ k and
define

kmin(Γ)
def
= max

1≤j≤l
(κj − j + 1).

This makes kmin(Γ) the smallest positive integer k such that Γ can appear in a floor diagram on {1, 2, . . . }
with left-most vertex k. See [FM10, Figure 10] for a list of all templates Γ with δ(Γ) ≤ 2.

Our new decomposition of a floor diagram D depends on two (infinite) matrices A and B of non-
negative integers. We require both to have only finitely many non-zero entries all of which lie above the
respective dth row, where d is the degree of D.

The triple (D, A,B) decomposes as follows. Let l(A) and l(B) be the largest row indices such that A
and B have a non-zero entry in this row, respectively. After we remove all “short edges” from D, i.e., all
edges of weight 1 between consecutive vertices, the resulting graph is an ordered collection of templates
(Γ1, . . . ,Γr), listed left to right. Let ks be the smallest vertex in D of each template Γs. Record all pairs
(Γs, ks) which satisfy ks + l(Γs) ≤ d−max(l(A), l(B)). Record the remaining templates together with
all vertices i, for i ≥ max(l(A), l(B)) in one graph Λ on vertices 0, . . . , l by shifting the vertex labels by
d − l. See Example 3.4 for an example of this decomposition. Furthermore, by construction, if m is the
number of recorded pairs (Γs, ks), we have ki ≥ kmin(Γi) for 1 ≤ i ≤ m,

ki+1 ≥ ki + l(Γi) for 1 ≤ i ≤ m− 1,
km + l(Γm) ≤ d− l(Λ).

(3.1)

Fix a floor diagram D. A partitioning of α and β into a compatible pair of collections ({αi, βi})
(see Step 1 in Definition 2.3), where i runs over the vertices of D, determines a pair of matrices A,B,
if α1, α2, . . . , β1, β2, . . . are large enough as follows. Define the ith row ai resp. bi of the matrices A
resp. B to be the sequence αd−i resp. βd−i, for i ≥ 1, where d is the degree of D. (If d − i ≤ 0, set
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ai = bi = 0.) In other words, the jth entry aij in row i ofA is the number of α-edges of weight i adjacent
to the (j+ 1)st vertex of Λ, counted from the right, and similarly for B (see Example 3.2). The sequences
αd and βd (which are attached to the right-most vertex of D) satisfy

αd = α−
∑
i≥1

ai and βd = β −
∑
i≥1

bi (3.2)

if both expression are (component-wise) non-negative.

Example 3.2 For α = (1, 1), β = (4, 1) and the floor diagram D pictured below, the partitioning

3 2D =

αi = (0, 1) (1)

βi = (1) (1) (2, 1)

determines the matrices

A =


0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
.
.
.

.

.

.

.

.

.
.
.
.

 B =


0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
.
.
.

.

.

.

.

.

.
.
.
.


In light of (3.2) we consider, for given tangency conditions α and β, only triples (D, A,B) with∑

i≥1

ai ≤ α and
∑
i≥1

bi ≤ β (always component-wise), (3.3)

For fixed d, the decomposition (
D, A,B

)
−→

(
{(Γs, ks)},Λ, A,B

)
. (3.4)

is reversible if the data on the right-hand side satisfies (3.1) and the tuple (Λ, A,B) is an “extended
template.”

Definition 3.3 A tuple (Λ, A,B) is an extended template of length l = l(Λ) = l(Λ, A,B) if Λ is a
directed graph (possibly with multiple edges) on vertices {0, . . . , l}, where l ≥ 0, with edge weights
w(e) ∈ Z>0, satisfying:

1. If i→ j is an edge then i < j.

2. Every edge i e→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

Moreover, we require A and B to be (infinite) matrices with non-negative integral entries and finite sup-
port, and we write l(A) and l(B) for the respective largest row indices of A and B of a non-zero entry.
Additionally, we demand that l(Λ) ≥ max(l(A), l(B)) and that, for each 1 ≤ j < l −max(l(A), l(B)),
there is an edge i→ k of Λ with i < j < k.

Example 3.4 An example of a decomposition of a floor diagram D subject to the matrices A and B of
Example 3.2 is pictured below. Once we fix the degree of the floor diagram the decomposition is reversible
(here d = 8).

3 2 ↔ 3 2

(Γ1, 1)
Λ
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The cogenus of an extended template (Λ, A,B) is the sum of the cogenera δ(Λ), δ(A) and δ(B), where

δ(Λ)
def
=
∑
e

i→j

[
(j − i)w(e)− 1

]
, δ(A)

def
=
∑
i,j≥1

i · j · ai,j ,

and similarly for B. It is not hard to see that the correspondence (3.4) is cogenus preserving in the sense
that

δ(D) =

(
m∑
i=1

δ(Γi)

)
+ δ(Λ) + δ(A) + δ(B).

With an extended template (Λ, A,B) we associate the following numerical data. For 1 ≤ j ≤ l(Λ)
let κj(Λ) denote the sum of the weights of edges i → k of Λ with i < j ≤ k. Define dmin(Λ, A,B)
to be the smallest positive integer d such that (Λ, A,B) can appear (at the right end) in a floor diagram
on {1, 2, . . . , d}. We will see later that dmin is given by an explicit formula. For a matrix A = (aij) of
non-negative integers with finite support define the “weighted lower sum sequence” wls(A) by

wls(A)i
def
=

∑
i′≥i,j≥1

j · ai′j . (3.5)

We now define the number of “markings” of templates and extended templates and relate them to
the number of (α, β)-markings of the corresponding floor diagrams. To each template Γ we associate
a polynomial as follows. For k ≥ kmin(Γ) let Γ(k) denote the graph obtained from Γ by first adding
k + i − 1 − κi short edges connecting i − 1 to i, for 1 ≤ i ≤ l(Γ), and then subdividing each edge of
the resulting graph by introducing one new vertex for each edge. By [FM10, Lemma 5.6] the number
of linear extensions (up to equivalence, see the paragraph after Definition 2.3) of the vertex poset of the
graph Γ(k) extending the vertex order of Γ is given by a polynomial PΓ(k) in k, if k ≥ kmin(Γ)(see
[FM10, Figure 10]).

For each pair of sequences (α, β) and each extended template (Λ, A,B) satisfying (3.3) and d ≥ dmin,
where d =

∑
i≥1 i(αi + βi), we define its “number of markings” as follows. Write l = l(Λ) and let

P(Λ, A,B) be the poset obtained from Λ by

1. first creating an additional vertex l + 1 (> l),

2. then adding bij edges of weight j between l − i and l + 1, for all 1 ≤ i ≤ l and j ≥ 1,

3. then adding βj −
∑
i≥1 bij edges of weight j between l and l + 1, for j ≥ 1,

4. then adding
d− l(Λ) + i− 1− κi(Λ)− wls(A)l+1−i − wls(B)l+1−i (3.6)

(“short”) edges of weight 1 connecting i− 1 and i, for 1 ≤ i ≤ l, and finally

5. subdividing all edges of the resulting graph by introducing a midpoint vertex for each edge.

Denote byQ(Λ,A,B)(α;β) the number of linear orderings onP(Λ, A,B) (up to equivalence) which extend
the linear order on Λ. As d ≥ dmin(Λ, A,B) if and only if (3.6) is non-negative, for 1 ≤ i ≤ l, we have

dmin(Λ, A,B) = max
1≤i≤l(Λ)

(l(Λ)− i+ 1 + κi(Λ) + wls(A)l(Λ)+1−i + wls(B)l(Λ)+1−i).
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For sequences s, t1, t2, . . . with s ≥
∑
i ti (component-wise) we denote by

(
s

t1,t2,...

) def
= s!

t1!t2!···(s−
∑
i ti)!

the multinomial coefficient of sequences.
We obtain all (α, β)-markings of the floor diagram D that come from a compatible pair of sequences

({αi}, {βi}) by independently ordering the α-vertices and the non-α-vertices. The number such markings
is given (via the correspondence (3.4)) by

( m∏
s=1

PΓs(ks)
)
·
(

α

aT1 , a
T
2 , . . .

)
·Q(Λ,A,B)(α;β), (3.7)

where aT1 , a
T
2 , . . . are the column vectors of A. We conclude this section by recasting relative Severi

degrees in terms of templates and extended templates.

Proposition 3.5 For any δ ≥ 1, the relative Severi degree Nδ
α,β is given by

∑
(Γ1, . . . ,Γm),

(Λ, A,B)

( m∏
s=1

µ(Γs)
∑

k1,...km

m∏
s=1

PΓs(ks)
)
·
(
µ(Λ)

∏
i≥1

iβi
(

α

a1, a2, . . .

)
Q(Λ,A,B)(α;β)

)
, (3.8)

where the first sum is over all collections (Γ1, . . . ,Γm) of templates and all extended templates (Λ, A,B)
satisfying (3.3), d ≥ dmin(Λ, A,B) and

m∑
i=1

δ(Γi) + δ(Λ) + δ(A) + δ(B) = δ,

and the second sum is over all positive integers k1, . . . , km which satisfy (3.1).

4 Relative Severi Degrees and Polynomiality
We now turn to the discussion of the proofs of our main results by first mentioning a number of technical
lemmata whose proofs can be found in [Blo10]. For a graph G, we denote by #E(G) the number of
edges of G. We write ||A||1 =

∑
i,j≥1 aij for the 1-norm of a (possibly infinite) matrix A = (aij).

Lemma 4.1 For every extended template (Λ, A,B) there is a polynomial q(Λ,A,B) inα1, α2, . . . , β1, β2, . . .
of degree #E(Λ) + ||B||1 + δ(B) such that for all α and β satisfying (3.3) the number Q(Λ,A,B)(α;β)
of linear orderings (up to equivalence) of the poset P(Λ, A,B) is given by

Q(Λ,A,B)(α;β) =
(|β| − δ(B))!

β!
· q(Λ,A,B)(α;β)

provided
∑
i≥1 i(αi + βi) ≥ dmin(Λ, A,B).

Recall that, for an extended template (Λ, A,B), we defined dmin = dmin(Λ, A,B) to be the smallest
d ≥ 1 such that d− l(Λ)+ i−1 ≥ κi(Λ)+wls(A)l(Λ)+1−i+wls(B)l(Λ)+1−i for all 1 ≤ i ≤ l(Λ). Let i0
be the smallest i for which equality is attained (it is easy to see that equality is attained for some i). Define
the quantity s(Λ, A,B) to be the number of edges of Λ from i0 − 1 to i0 (of any weight). See [Blo10,
Figure 2] for examples.
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Lemma 4.2 For any extended template (Λ, A,B) and any α, β ≥ 0 (component-wise) with

dmin(Λ, A,B)− s(Λ, A,B) ≤
∑
i≥1

i(αi + βi) ≤ dmin(Λ, A,B)− 1

we have q(Λ,A.B)(α;β) = 0, where q(Λ,A,B) is the polynomial of Lemma 4.1.

The next lemma specifies which extended templates are compatible with a given degree.

Lemma 4.3 For every extended template (Λ, A,B) we have

dmin(Λ, A,B)− s(Λ, A,B) ≤ δ(Λ) + δ(A) + δ(B) + 1.

Proof of Theorems 1.1 and 1.2: The basic idea of the proof is to show that all summands of (3.8) are
polynomial in α1, α2, . . . , β1, β2, . . . (up to the combinatorial factor), thus contribute polynomially to
the relative node polynomial Nδ(α;β). The first factor of each summand is an iterated “discrete inte-
gral” of polynomials and thus polynomial in d. For the second factor we use Lemma 4.1. Then we use
Lemmata 4.2 and 4.3 to reduce the polynomiality threshold. For a detailed proof see [Blo10]. 2

Remark 4.4 Expression (3.8) gives, in principle, an algorithm to compute the relative node polynomial
Nδ(α;β), for any δ ≥ 1. In [Blo11, Section 3] we explain how to generate all templates of a given
cogenus, and how to compute the first factor in (3.8). The generation of all extended templates of a given
cogenus from the templates is straightforward, as is the computation of the second factor in (3.8).

Proof of Theorem 1.4: Proposition 3.5 gives a combinatorial description of relative Severi degrees. The
proof of Lemma 4.1 (see [Blo10]) provides a method to calculate the polynomial Q(Λ,A,B)(α;β). All
terms of expression (3.8) are explicit or can be evaluated using the techniques of [Blo11, Section 3]. This
reduces the calculation to a (non-trivial) computer calculation. 2

5 Coefficients of Relative Node Polynomials
We now turn towards the computation of the coefficients of the relative node polynomial Nδ(α;β) of
large degree for any δ. We propose a method to compute all terms of Nδ(α;β) of degree ≥ 3δ − t, for
any given t ≥ 0. This method was used (with t = 2) to compute the terms in Theorem 1.5.

The main idea of the algorithm is that, even for general δ, only a small number of summands of (3.8)
contribute to the terms of Nδ(α;β) of large degree. A summand of (3.8) is indexed by a collection of
templates Γ̃ = {Γs} and an extended template (Λ, A,B). To determine whether this summand might
contribute to Nδ(α;β) we define the (degree) defects

• of the collection of templates Γ̃ by def(Γ̃)
def
=
∑m
s=1

[
δ(Γi)

]
−m, and

• of the extended template (Λ, A,B) by def(Λ, A,B)
def
= δ(Λ) + 2δ(A) + 2δ(B)− ||A||1 − ||B||1.

The following lemma restricts the indexing set of (3.8) to the relevant terms, if only the leading terms
of Nδ(α;β) are of interest. For a proof see [Blo10].
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Lemma 5.1 The summand of (3.8) indexed by Γ̃ and (Λ, A,B) is of the form

1β12β2 · · · (|β| − δ)!
β!

· P (α;β),

where P (α;β) is a polynomial in α1, α2, . . . , β1, β2, . . . of degree ≤ 3δ − def(Γ̃)− def(Λ, A,B).

Therefore, to compute the coefficients of degree ≥ 3δ − t of Nδ(α;β) for some t ≥ 0, it suffices to
consider only summands of (3.8) with def(Γ̃) ≤ t and def(Λ, A,B) ≤ t.

One can proceed as follows. First, we can compute, for some formal variable δ̃, the terms of degree
≥ 2δ̃ − t of the first factor of (3.8) to Nδ̃(α;β), that is the terms of degree ≥ 2δ̃ − t of

Rδ̃(d)
def
=
∑ m∏

i=1

µ(Γi)

d−l(Γm)∑
km=kmin(Γm)

PΓm(km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

PΓ1(k1), (5.1)

where the first sum is over all collections of templates Γ̃ = (Γ1, . . . ,Γm) with δ(Γ̃) = δ̃. The leading
terms of Rδ̃(d) can be computed with a slight modification of [Blo11, Algorithm 2] (by replacing, in the
notation of [Blo11], Cend by C and M end by M ). The algorithm relies on the polynomiality of solutions
of certain polynomial difference equations, which has been verified for t ≤ 7, see [Blo11, Section 5] for
more details.

Finally, to compute the coefficients of degree ≥ 3δ − t, it remains to compute all extended templates
(Λ, A,B) with def(Λ, A,B) ≤ t and collect the terms of degree ≥ 3δ − t of the polynomial

Rδ̃(d− l(Λ)) · µ(Λ)

(
α

aT1 , a
T
2 , . . .

) δ−1∏
i=δ(B)

(|β| − i) · q(Λ,A,B)(α;β), (5.2)

where, as before, aT1 , a
T
2 , . . . denote the column vectors of the matrixA, q(Λ,A,B)(α;β) is the polynomial

of Lemma 4.1, and δ̃ = δ− δ(Λ, A,B). Notice that, for an indeterminant x and integers c ≥ 0 and δ ≥ 1,
we have the expansion

δ−1∏
i=c

(x− i) =

δ−c∑
t=0

s(δ − c, δ − c− t)(x− c)δ−c−t,

where s(n,m) is the Stirling number of the first kind [Sta97, Section 1.3] for integers n,m ≥ 0. Further-
more, with δ′ = δ − c the coefficients s(δ′, δ′ − t) of the sum equal δ′(δ′ − 1) · · · (δ′ − t) · St(δ′), where
St is the t-th Stirling polynomial [GKP94, (6.45)], for t ≥ 0, and thus are polynomial in δ′. Therefore, we
can compute the leading terms of the product in (5.2) by collecting the leading terms in the sum expansion
above. Theorem 1.5 is proved by an implementation of this method.

Proof of Proposition 1.6: Using [Blo11, Algorithm 2] we can compute the terms of the polynomial
RΓ̃(d) of degree ≥ 2δ̃ − 7 (see [Blo11, Section 5]) and observe that all coefficients are polynomial in δ̃.
By the previous paragraph the coefficients of the expansion of the sum of (5.2) are polynomial in δ. This
completes the proof. 2

Remark 5.2 It is straight-forward to compute the coefficients of Nδ(α;β) of degree ≥ 3δ − 7 (and
thereby to extend Theorem 1.5). Algorithm 3 of [Blo11] computes the coefficients of the polynomials
Rδ̃(d) of degree ≥ 2δ̃ − 7, and thus the desired terms can be collected from (5.2). We expect this method
to compute the leading terms of Nδ(α, β) of degree ≥ 3δ − t for arbitrary t ≥ 0 (see [Blo11, Section 5],
especially Conjecture 5.5).
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