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Polynomial functions on Young diagrams
arising from bipartite graphs
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Abstract. We study the class of functions on the set of (generalized) Young diagrams arising as the number of
embeddings of bipartite graphs. We give a criterion for checking when such a function is a polynomial function on
Young diagrams (in the sense of Kerov and Olshanski) in terms of combinatorial properties of the corresponding
bipartite graphs. Our method involves development of a differential calculus of functions on the set of generalized
Young diagrams.

Résumé. Nous étudions la classe des fonctions sur l’ensemble des diagrammes de Young (généralisés) qui sont
définies comme des nombres d’injections de graphes bipartites. Nous donnons un critère pour savoir si une telle
fonction est une fonctions polynomiale sur les diagrammes de Young (au sens de Kerov et Olshanski) utilisant les
propriétés combinatoires des graphes bipartites correspondants. Notre méthode repose sur le développement d’un
calcul différentiel sur les fonctions sur les diagrammes de Young généralisés.

Keywords: Polynomial functions on Young diagrams, coloring of bipartite graphs, differential calculus on Young
diagrams

The full version of this extended abstract will be published elsewhere.

1 Introduction
1.1 Prominent examples of polynomial functions on Young diagrams
The character χλ(π) of the symmetric group is usually considered as a function of the permutation π, with
the Young diagram λ fixed. Nevertheless, it was observed by Kerov and Olshanski (1994) that for several
problems of the asymptotic representation theory it is convenient to do the opposite: keep the permutation
π fixed and let the Young diagram λ vary. It should be stressed the Young diagram λ is arbitrary, in
particular there are no restrictions on the number of boxes of λ. In this way it is possible to study the
structure of the series of the symmetric groups S1 ⊂ S2 ⊂ · · · and their representations in a uniform
way. In order for this idea to be successful one has to replace the usual characters χλ(π) by, so called,
normalized characters Σπ(λ), namely for partitions π, λ such that |π| = k, |λ| = n we define

Σπ(λ) =


n(n− 1) · · · (n− k + 1)︸ ︷︷ ︸

k factors

χλ(π,1n−k)
χλ(1n)

if k ≤ n,

0 otherwise.
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There are several other interesting examples of functions on the set of Young diagrams which in some
sense — which will be specified in Section 1.2 — are similar to the normalized characters; we recall some
of them in the following.

Free cumulantsRk(λ), introduced by Kerov (2000a) and Biane (2003), are relatively simple functionals
of the shape of the Young diagram λ. Their advantage comes from the fact that the normalized characters
can be expressed in terms of free cumulants and that this expression takes a particularly simple form
(Biane, 2003).

There are other interesting functionals of the shape of the Young diagram and fundamental functionals
of shape, which are defined in Section 2.3, are very simple examples. These functionals are quite useful
and powerful in the context of differential calculus on Young diagrams.

Jack symmetric functions (Jack, 1970/1971) are a generalization of Schur functions and are indexed by
an additional parameter α > 0. They can be used to define Jack characters Σ

(α)
π (λ) which are a natural

generalization of the normalized characters of the symmetric groups. For some special values of α Jack
symmetric functions become well-known objects. For example, for α = 2 we obtain so-called zonal
polynomial which is a zonal spherical function for the Gelfand pairs (S2n, Hn), where Hn denotes the
hyperoctahedral group. This example has an important meaning in the representation theory for Gelfand
pairs. Jack characters are related with α-anisotropic Young diagrams which are deformed Young diagrams
with respect to the parameter α. More precisely, for a Young diagram λ = (λ1, . . . , λk) we can construct
an α-anisotropic Young diagram αλ by rescaling the original diagram in one direction by parameter α,
i.e. αλ = (αλ1, . . . , αλk). The connection between functions on α-anisotropic Young diagrams and Jack
polynomials was obtained by Kerov (2000b).

1.2 The algebra of polynomial functions on Young diagrams
Kerov and Olshanski (1994) defined the algebra P of polynomial functions on the set Y of Young dia-
grams. This algebra is generated by every example of a family of functions on Young diagrams which we
presented in Section 1.1. The problem of how to express an element of one basis in terms of the elements
of another basis of this algebra is very fascinating and it is related to Kerov polynomials, Goulden-Rattan
polynomials and many other combinatorial objects which are sometimes well-known, but sometimes far
away from being satisfactorily understood.

The algebra P of polynomial functions on Y turns out to be isomorphic to a subalgebra of the algebra
of partial permutations of Ivanov and Kerov (1999). Therefore we can view the elements of P as (linear
combinations of) partial permutations. Since the multiplication of functions on Y corresponds to convo-
lution of central functions on partial permutations, we see that the algebra P turns out to be very closely
related to the problems of computing connection coefficients and multiplication of conjugacy classes in
the symmetric groups.

The algebra P is canonically isomorphic to the algebra of shifted symmetric functions. The algebra of
shifted symmetric functions is an important object in the symmetric functions theory and the isomorphism
with the algebra P gives some new results in this field due to Okounkov and Olshanski (1998).

1.3 Numbers of colorings of bipartite graphs
The set of vertices of a bipartite graphGwill always be V = V1tV2 with the elements of V1 (respectively,
V2) referred to as white (respectively, black) vertices.

We consider a coloring h of the white vertices in V1 by columns of the given Young diagram λ and
of the black vertices in V2 by rows of the given Young diagram λ. Formally, a coloring is a function
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h : V1tV2 → N and we say that this coloring is compatible with a Young diagram λ if (h(v1), h(v2)) ∈ λ
(where (h(v1), h(v2)) denotes the box placed in h(v1)th column and in h(v2)th row) for each edge (v1, v2)
of G with v1 ∈ V1, v2 ∈ V2. Alternatively, a coloring which is compatible with λ can be viewed as a
function which maps the edges of the bipartite graph to boxes of λwith a property that if edges e1, e2 share
a common white (respectively, black) vertex then h(e1) and h(e2) are in the same column (respectively,
the same row). We can think that such a coloring defines an embedding of a graph G into the Young
diagram λ. We denote by NG(λ) the number of colorings of G which are compatible with λ which is the
same as the number of embeddings of G into λ by the above identification.

1.4 Polynomial functions on Young diagrams and bipartite graphs
Suppose that some interesting polynomial function F ∈ P is given. It turns out that it is very convenient
to write F as a linear combination of the numbers of embeddings NG for some suitably chosen bipartite
graphs G:

F =
∑
G

αGNG (1)

which is possible for any polynomial function F . This idea was initiated by Féray and Śniady (2011a)
who found explicitly such linear combinations for the normalized characters Σπ(λ) and who used them
to give new upper bounds on the characters of the symmetric groups. Another application of this idea was
given by Dołęga, Féray, and Śniady (2010) who found explicitly the expansion of the normalized character
Σπ(λ) in terms of the free cumulants Rs(λ); such expansion is called Kerov polynomial (Kerov, 2000a;
Biane, 2003).

The above-mentioned two papers concern only the case when F = Σπ is the normalized character,
nevertheless it is not difficult to adapt them to other cases for which the expansion of F intoNG is known.
For example, Féray and Śniady (2011b) found also such a representation for the zonal characters and in
this way found the Kerov polynomial for the zonal polynomials.

It would be very tempting to follow this path and to generalize these results to other interesting polyno-
mial functions on Y. However, in order to do this we need to overcome the following essential difficulty.

Problem 1.1 For a given interesting polynomial function F on the set of Young diagrams, how to find
explicitly the expansion (1) of F as a linear combination of the numbers of colorings NG?

This problem is too ambitious and too general to be tractable. In this article we will tackle the following,
more modest question.

Problem 1.2 Which linear combinations of the numbers of coloringsNG are polynomial functions on the
set of Young diagrams?

Surprisingly, in some cases the answer to this more modest Problem 1.2 can be helpful in finding the
answer to the more important Problem 1.1.

1.5 How characterization of polynomial functions can be useful?

Jack shifted symmetric functions J (α)
µ with parameter α are indexed by Young diagrams and are charac-

terized (up to a multiplicative constant) by the following conditions:

(i) J (α)
µ (µ) 6= 0 and for each Young diagram λ such that |λ| ≤ |µ| and λ 6= µ we have J (α)

µ (λ) = 0;
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(ii) J (α)
µ is an α-anisotropic polynomial function on the set of Young diagrams, i.e. the function λ 7→
J
(α)
µ

(
1
αλ
)

is a polynomial function;

(iii) J (α)
µ has degree equal to |µ| (regarded as a shifted symmetric function).

The structure on Jack polynomials remains mysterious and there are several open problems concerning
them. The most interesting for us are introduced and investigated by Lassalle (2008, 2009).

One possible way to overcome these difficulties is to write Jack shifted symmetric functions in the form

J (α)
µ (λ) =

∑
π`|µ|

n(α)π Σ(α)
π (µ) Σ(α)

π (λ),

where n(α)π is some combinatorial factor which is out of scope of the current paper and where Σ
(α)
π , called

Jack character, is an α-anisotropic polynomial function on the set of Young diagrams. The problem is
therefore reduced to finding the expansion (1) for Jack characters (which is a special case of Problem 1.1).
It is tempting to solve this problem by guessing the right form of the expansion (1) and then by proving
that so defined J (α)

µ have the required properties.
We expect that verifying a weaker version of condition (i), namely:

(i’) For each Young diagram λ such that |λ| < |µ| we have J (α)
µ (λ) = 0

should not be too difficult; sometimes it does not matter if in the definition of NG(λ) we count all em-
beddings of the graph into the Young diagram or we count only injective embeddings in which each edge
of the graph is mapped into a different box of λ. If this is the case then condition (i’) holds trivially if all
graphs G over which we sum have exactly |µ| edges. Also condition (iii) would follow trivially. The true
difficulty is to check that condition (ii) is fulfilled which is exactly the special case of Problem 1.2 (up to
the small rescaling related to the fact that we are interested now with α-anisotropic polynomial functions).

1.6 The main result
The main result of this paper is Theorem 5.1 which gives a solution to Problem 1.2 by characterizing the
linear combinations of NG which are polynomial functions on Y in terms of a combinatorial property of
the underlying formal linear combinations of bipartite graphs G.

1.7 Contents of this article
In this article we shall highlight just the main ideas of the proof of Theorem 5.1 because the whole proof is
rather long and technical. In particular we will briefly show the main conceptual ingredients: differential
calculus on Y and derivation of bipartite graphs.

Due to lack of space we were not able to show the full history of the presented results and to give to
everybody the proper credits. For more history and bibliographical references we refer to the full version
of this article Dołęga and Śniady (2010) which will be published elsewhere.

2 Preliminaries
2.1 Russian and French convention
We will use two conventions for drawing Young diagrams: the French one in the 0xy coordinate system
and the Russian one in the 0zt coordinate system (presented on Figure 1). Notice that the graphs in the
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Fig. 1: Young diagram (4, 3, 1) shown in the French and Russian conventions. The solid line represents the profile
of the Young diagram. The coordinates system (z, t) corresponding to the Russian convention and the coordinate
system (x, y) corresponding to the French convention are shown.

Russian convention are created from the graphs in the French convention by rotating counterclockwise
by π

4 and by scaling by a factor
√

2. Alternatively, this can be viewed as choice of two coordinate
systems on the plane: 0xy, corresponding to the French convention, and 0zt, corresponding to the Russian
convention. For a point on the plane we will define its content as its z-coordinate.

In the French coordinates will use the plane R2 equipped with the standard Lebesgue measure, i.e. the
area of a unit square with vertices (x, y) such that x, y ∈ {0, 1} is equal to 1. This measure in the Russian
coordinates corresponds to a the Lebesgue measure on R2 multiplied by the factor 2, i.e. i.e. the area of
a unit square with vertices (z, t) such that z, t ∈ {0, 1} is equal to 2.

2.2 Generalized Young diagrams
We can identify a Young diagram drawn in the Russian convention with its profile, see Figure 1. It is
therefore natural to define the set of generalized Young diagrams Y (in the Russian convention) as the set
of functions ω : R→ R+ which fulfill the following two conditions:

• ω is a Lipschitz function with constant 1, i.e. |ω(z1)− ω(z2)| ≤ |z1 − z2|,

• ω(z) = |z| if |z| is large enough.

We will define the support of ω in a natural way:

supp(ω) = {z ∈ R : ω(z) 6= |z|}.

2.3 Functionals of shape
We define the fundamental functionals of shape λ for integers k ≥ 2

Sk(λ) = (k − 1)

∫∫
(x,y)∈λ

(x− y)k−2 dx dy =
1

2
(k − 1)

∫∫
(z,t)∈λ

zk−2 dz dt,

where the first integral is written in the French and the second in the Russian coordinates. The family
(Sk)k≥2 generates the algebra P of polynomial functions on Young diagrams (Dołęga, Féray, and Śniady,
2010).
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3 Differential calculus of functions on Young diagrams
3.1 Content-derivatives
Let F be a function on the set of generalized Young diagrams and let λ be a generalized Young diagram.
We ask how quickly the value of F (λ) would change if we change the shape of λ by adding infinitesi-
mal boxes with content equal to z. In order to answer this informally formulated question we define a
derivative of F with respect to content z; this definition is inspired by the Gâteaux derivative. We say that

∂CzF (λ) = f(z)

if f : R→ R is a continuous function such that for any ε > 0 and C > 0 there exists δ > 0 such that for
any generalized Young diagrams ω1, ω2 supported on [−C,C] such that ‖ω − ωi‖L1 < δ for i ∈ {1, 2}∣∣∣∣F (ω1)− F (ω2)− 1

2

∫
R
f(z)

(
ω1(z)− ω2(z)

)
dz

∣∣∣∣ ≤ ε ‖ω1 − ω2‖L1 . (2)

The strange constant 1
2 in the above definition appears because of the fact that we are working with a

Russian convention which rescales the length and the height of the Young diagram by a factor
√

2, hence

Area(λ) =
1

2

∫
R

(
ω(z)− |z|

)
dz.

It can be shown using similar methods as in the case of a standard Gâteaux derivative that a content-
derivative has the following properties:

(A) If the derivative ∂CzF (λ) exists, then it is unique.

(B) The Leibniz rule holds, i.e. if F1, F2 are sufficiently smooth functions then

∂CzF1F2 = (∂CzF1)F2 + F1∂CzF2.

(C) For any integer k ≥ 2
∂CzSk = (k − 1)zk−2.

The next proposition shows important properties of derivation of a polynomial function on Y.

Proposition 3.1 Let F be a polynomial function on Y.

• For any Young diagram λ the function R 3 z 7→ ∂CzF (λ) is a polynomial.

• For any z0 ∈ R the function Y 3 λ 7→ ∂Cz0F (λ) is a polynomial function on Y.

• For any integer k ≥ 0 the function Y 3 λ 7→ [zk]∂CzF (λ) is a polynomial function on Y.

Proof: By linearity it is enough to prove it for F =
∏

1≤i≤n Ski . Then, thanks to the properties (B) and
(C), we have that

∂CzF =
∑

1≤i≤n

∏
1≤j≤n
j 6=i

Skj (ki − 1)zki−2,
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which is a polynomial in z for fixed λ, and which is a polynomial function on Y for fixed z = z0.
Moreover [zk]∂CzF (λ) is a linear combination of products of Ski , hence it is a polynomial function on
Y, which finishes the proof. 2

The main result of this paper is that (in some sense) the opposite implication is true as well and thus it
characterizes the polynomial functions on Y.

In order to show it we would like to look at the content-derivative of NG(λ), hence it is necessary to
extend the domain of the function NG to the set of generalized Young diagrams. This extension is very
natural. Indeed, we consider a coloring h : V1 t V2 → R+ and we say that this coloring is compatible
with generalized Young diagram λ if (h(v1), h(v2)) ∈ λ for each edge (v1, v2) ∈ V1 × V2 of G. If we fix
the order of vertices in V = V1 t V2, we can think of a coloring h as an element of R|V |+ . Then we define

NG(λ) = vol{h ∈ R|V |+ : h compatible with λ}.

Notice that this is really an extension, i.e. this function restricted to the set of ordinary Young diagrams is
the same as NG which was defined in Section 1.3.

Just before we finish this section, let us state one more lemma which will be helpful soon and which
explains the connection between the usual derivation of a function on the set of Young diagrams when we
change the shape of a Young diagram a bit, and the content-derivative of this function.

Lemma 3.2 Let R 3 t 7→ λt be a sufficiently smooth trajectory in the set of generalized Young diagrams
and let F be a sufficiently smooth function on Y. Then

d

dt
F (λt) =

∫
R

1

2

dωt(z)

dt
∂CzF (λt) dz.

Proof: This is a simple consequence of equality (2). 2

4 Derivatives on bipartite graphs
Let G be a bipartite graph. We denote

∂zG =
∑
e

(G, e)

which is a formal sum (formal linear combination) which runs over all edges e of G. We will think about
the pair (G, e) that it is graph G with one edge e decorated with the symbol z. More generally, if G is a
linear combination of bipartite graphs, this definition extends by linearity.

If G is a bipartite graph with one edge decorated by the symbol z, we define

∂xG =
∑
f

Gf≡z

which is a formal sum which runs over all edges f 6= z which share a common black vertex with the edge
z. The symbol Gf≡z denotes the graph G in which the edges f and z are glued together (which means
that also the white vertices of f and z are glued together and that from the resulting graph all multiple
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edges are replaced by single edges). The edge resulting from gluing f and z will be decorated by z. More
generally, if G is a linear combination of bipartite graphs, this definition extends by linearity.

We also define
∂yG =

∑
f

Gf≡z

which is a formal sum which runs over all edges f 6= z which share a common white vertex with the edge
z.

Conjecture 4.1 Let G be a linear combination of bipartite graphs with a property that

(∂x + ∂y) ∂zG = 0.

Then for any integer k ≥ 1 (
∂kx − (−∂y)k

)
∂zG = 0.

We are able to prove Conjecture 4.1 under some additional assumptions, however we believe it is true in
general.

5 Characterization of functions arising from bipartite graphs which
are polynomial

5.1 The main result
Theorem 5.1 Let G be a linear combination of bipartite graphs such that(

∂kx − (−∂y)k
)
∂zG = 0 (3)

for any integer k > 0. Then λ 7→ Nλ
G is a polynomial function on the set of Young diagrams.

The main idea of the proof is to find a connection between content-derivative of a function NG and a
combinatorial derivation of the underlying linear combination of bipartite graphs G; we present it in the
following.

5.2 Colorings of bipartite graphs with decorated edges
Let a Young diagram λ and a bipartite graph G be given. If an edge of G is decorated by a real number z,
we decorate its white end by the number ω(z)+z2 (which is the x-coordinate of the point at the profile of λ
with contents equal to z) and we decorate its black end by the number ω(z)−z2 (which is the y-coordinate
of the point at the profile of λ with contents equal to z). If some disjoint edges are decorated by n real
numbers z1, . . . , zn, then we decorate white and black vertices in an analogous way.

For a bipartite graph G with some disjoint edges decorated we define NG(λ), the number of colorings
of λ, as the volume of the set of functions from undecorated vertices to R+ such that these functions
extended by values of decorated vertices are compatible with λ.

We will use the following lemma:

Lemma 5.2 Let (G, z) be a bipartite graph with one edge decorated by a real number z. Then

• d
dzN(G,z)(λ) = ω′(z)+1

2 N∂x(G,z)(λ) + ω′(z)−1
2 N∂y(G,z)(λ),
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Fig. 2: Piecewise-affine generalized Young diagram.

• ∂CzNG = N∂zG.

The proof of this lemma is not difficult, but it is quite technical and we omit it.
Using Lemma 5.2, Theorem 4.1, and results from Section 3 one can prove the following lemma:

Lemma 5.3 Let the assumptions of Theorem 5.1 be fulfilled. Then

• z 7→ N∂zG(λ) is a polynomial and

• λ 7→ [zi]N∂zG(λ) is a polynomial function on Y for any i.

Proof: The main ideas of the proof are the following. In order to show the first property we are looking
at di

dziN∂zG and using Lemma 5.2 we can show that di

dziN∂zG = 0 for any i > |V | − 2. The proof of the
second property is going by induction on i and it uses an Lemma 3.2 in a similar way like the proof of
Theorem 5.1 below. It is quite technical, so let us stop here. 2

5.3 Proof of the main result

Proof of Theorem 5.1: We can assume without loss of generality that every graph which contributes to G
has the same number of vertices, equal tom. Indeed, if this is not the case, we can write G = G2+G3+· · ·
as a finite sum, where every graph contributing to Gi has i vertices; then clearly (3) is fulfilled for every
G′ := Gi.

Assume that λ is a piecewise affine generalized Young diagram such that |ω′(z)| < 1 for any z in the
support of ω (see Figure 2). For any t ∈ R+ we define a generalized Young diagram tλ which is a dilation
of λ by t. A profile ω̃ of tλ is given by ω̃(s) = tω(s/t). By Lemma 3.2 we can write:

NG(λ) =
1

m

d

dt
N tλ
G

∣∣∣∣
t=1

=
1

2m

∫
R

d

dt

(
tω(z/t)

)
∂CzNG(tλ)

∣∣∣∣
t=1

dz =

1

2m

∫
R

(
ω(z)− zω′(z)

)
∂CzNG(λ)dz.
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Then, by Lemma 5.2 we have that

NG(λ) =
1

2m

∫
R

(
ω(z)− zω′(z)

) ∑
0≤i≤m−2

(i+ 1)ziFi(λ)dz =

1

2m

∑
0≤i≤m−2

Fi(λ)

∫
R

(
ω(z)− zω′(z)

)
(i+ 1)zidz =

1

2m

∑
0≤i≤m−2

Fi(λ)Si+2(λ),

whereFi = 1
i+1 [zi]N∂zG(λ) is a polynomial function on Y for each i by Lemma 5.3. It finishes the proof.

2

6 Applications
6.1 Bipartite maps
A labeled (bipartite) graph drawn on a surface will be called a (bipartite) map. If this surface is orientable
and its orientation is fixed, then the underlying map is called oriented; otherwise the map is unoriented.
We will always assume that the surface is minimal in the sense that after removing the graph from the
surface, the latter becomes a collection of disjoint open discs. If we draw an edge of such a graph with a
fat pen and then take its boundary, this edge splits into two edge-sides. In the above definition of the map,
by ‘labeled’ we mean that each edge-side is labeled with a number from the set [2n] and each number
from this set is used exactly once.

Each bipartite labeled map can be constructed by the following procedure. For a partition λ ` n
we consider a family of `(λ) bipartite polygons with the number of edges given by partition 2λ =
(2λ1, . . . , 2λ`(λ)). Then we label the edges of the polygons by elements of [2n] in such a way that
each number is used exactly once. A pair-partition of [2n] is defined as a family P = {V1, . . . , Vn} of
disjoint sets called blocks of P , each containing exactly two elements and such that

⋃
P = [2n]. For a

given pair-partition P we glue together each pair of edges of the polygons which is matched by P in such
a way that a white vertex is glued with the other white one, and a black vertex with the other black one.

6.2 Normalized and zonal characters
Theorem 6.1 (Féray and Śniady (2011b)) Let Σ

(α)
µ denote the Jack character with parameter α. Then:

Σ(1)
µ =

∑
M

(−1)|Vb(M)| NM, (4)

where the summation is over all labeled bipartite oriented maps with the face type µ and

Σ(2)
µ =

∑
M

(−2)|Vb(M)| NM, (5)

where the summation is over all labeled bipartite maps (not necessarily oriented) with the face type µ.

Proof: Due to the characterization of a Jack symmetric function which was given in Section 1.5 it suffices
to show that the right hand sides of (4) and (5) satisfy conditions (i), (ii), (iii). Due to lack of space, instead
of (i) we will show a weaker condition (i’).
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Fig. 3: Example of a construction of a map and its subtree (M̃, T̃ ) (on the right) from a given map with its
subtree (M, T ) (on the left), such that M̃/T̃ = M/T . Face type of maps is given by µ = (12). As
pair-partitions we have M = {{1, 7}, {2, 3}, {4, 6}, {5, 11}, {8, 9}, {10, 12}}, T = {{2, 3}, {8, 9}}, M̃ =
{{1, 7}, {2, 8}, {3, 9}, {4, 6}, {5, 11}, {10, 12}}, T̃ = {{2, 8}, {3, 9}}.

Definition of N gives us property (iii) immediately. Property (i’) can be shown, as it was mentioned in
Section 1.5, by proving that if we change functions N on the right hand sides of (4) and (5) by some other
functions Ñ which count ‘injective embeddings’, the equalities will still hold. The proof of that will be
the same as in Féray and Śniady (2011b), hence we omit it.

The novelty in the current proof is showing the property (ii). First, we notice that

∑
M

(−2)|Vb(M)|NM(λ) =
∑
M

(−1)|Vb(M)|NM(2λ).

In the following we shall prove that condition (3) is fulfilled. Let us look at ∂kx(M, z) for some bipartite
mapM with one decorated edge by z. The procedure of derivation with respect to x can be viewed as
taking all subtrees ofM which consist of k + 1 edges connected by a black vertex and where one edge
is decorated by z and collapsing them to one decorated edge. Let us choose such a subtree T . We
can do the following procedure with T : we unglue every edges corresponding to T locally in a way
that we create k copies of a black vertex and local orientation of each vertex is preserved; in this way
we obtained locally a bipartite 2k + 2-gon; then we glue it again but in such a way that we glue white
vertices together in this 2k + 2-gon (see Figure 3). We obtained in this way a new bipartite map M̃, such
that |Vb(M̃)| = |Vb(M)| + k and which contains a subtree T̃ with k + 1 edges and one white vertex.
Moreover, collapsing of T in M to one decorated edge gives us the same bipartite graph as collapsing
of T̃ in M̃ to one decorated edge. We should check that this map has a face type µ, but this is clear
from our construction. Of course we can do the same procedure if we start from ∂ky (M, z), because of
the symmetry. These two procedures are inverses of each other hence (3) holds true. Applying the Main
Theorem 5.1 to our case we obtain the property (ii), which finishes the proof. 2
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