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A polynomial expression for the Hilbert series
of the quotient ring of diagonal coinvariants
(condensed version)

J. Haglund†

Department of Mathematics, University of Pennsylvania, Philadelphia, PA, USA

Abstract. A special case of Haiman’s identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the
quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the
bigraded Hilbert series as a sum of rational functions in q, t. In this paper we show how a summation identity of
Garsia and Zabrocki for Macdonald polynomial Pieri coefficients can be used to transform Haiman’s formula for the
Hilbert series into an explicit polynomial in q, t with integer coefficients. We also provide an equivalent formula for
the Hilbert series as the constant term in a multivariate Laurent series.

Résumé. Un cas spécial de l’identité de Haiman [Invent. Math. 149 (2002), pp. 371–407] pour le caractère de
l’anneau quotient des coinvariants diagonaux sous l’action du groupe symétrique fournit une formule pour la série
de Hilbert bigraduée comme somme de fonctions rationnelles en q, t. Dans cet article nous montrons comment une
identité de sommation de Garsia et Zabrocki pour les coefficients de Pieri des polynômes de Macdonald peut être
utilisée pour transformer la formule de Haiman pour la série de Hilbert en un polynôme explicite en q, t à coefficients
entiers. Nous présentons également une formule équivalente pour la série de Hilbert comme terme constant d’une
série de Laurent multivariée.
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1 Introduction
Let Xn = {x1, . . . , xn}, Yn = {y1, . . . , yn} be two sets of variables and let

DRn = C[Xn, Yn]/
〈
{
∑
i

xhi y
k
i ,∀h, k ≥ 0, h+ k > 0}

〉
(1)

be the quotient ring of diagonal coinvariants. Let ∇ be the linear operator defined on the modified Mac-
donald polynomial basis {H̃µ(Xn; q, t)}, where µ ` n (i.e. µ is a partition of n), by

∇H̃µ(Xn; q, t) = TµH̃µ(Xn; q, t), (2)
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where Tµ = tn(µ)qn(µ
′) and n(µ) =

∑
i(i − 1)µi. The symmetric group acts “diagonally” on a poly-

nomial f(x1, . . . , xn, y1, . . . , yn) by σf = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)) and this action extends
to DRn. Haiman [Hai02] proved an earlier conjecture of Garsia and Haiman [GH96] that the Frobenius
series of this action is given by ∇en(Xn), where en is the nth elementary symmetric function in a set of
variables. (The Frobenius series is obtained by starting with the character and mapping the irreducible
Sn-character χλ to the Schur function sλ.) Since the Frobenius series of DRn is given by∇en, the Hilbert
series Hilb(DRn) is given by 〈∇en, hn1 〉 (See [Hag08, p. 24] for an explanation of why. Here 〈, 〉 is the
Hall scalar product, with respect to which the Schur functions are orthonormal, and h1(X) =

∑
i xi.)

This results in a formula for Hilb(DRn) as an explicit sum of rational functions in q, t, described in detail
in the next section. A corollary of this formula is that dim(DRn) = (n + 1)n−1. See also [Hai94] and
[Ber09] for background on this problem. We mention that many articles in the literature refer to the space
of diagonal harmonics DHn, which is known to be isomorphic to DRn, and so Hilb(DHn) = Hilb(DRn).

A Dyck path is a lattice path in the first quadrant of the xy-plane from (0, 0) to (n, n) consisting of unit
north N and east E steps which never goes below the diagonal x = y. A parking function is a placement
of the integers 1, 2, . . . , n (called “cars”) just to the right of the N steps of a Dyck path, so there is strict
decrease down columns. An open conjecture of Loehr and the author [HL05] expresses Hilb(DRn) as
a positive sum of monomials, one for each parking function. In a recent preprint, Armstrong [Arm10]
introduces a hyperplane arrangement model for Hilb(DRn) involving a pair of hyperplane arrangements
with a statistic associated to each one. See also [AR]. He gives a bijection with parking functions which
sends his pair of hyperplane arrangement statistics to the pair of statistics on parking functions introduced
by Haglund and Loehr.

In this article we use a plethystic summation formula of Garsia and Zabrocki for Macdonald Pieri
coefficients to show how 〈∇en, hn1 〉 can be expressed as an element of Z[q, t]. The most elegant way of
expressing our result is to say that Hilb(DRn) is the coefficient of z1z2 · · · zn in a certain multivariate
Laurent series (see (41)). We are currently unable to see how our result implies a positive formula such as
the conjecture of Haglund and Loehr, but are hopeful that further work will lead to such applications.

2 Background Material

For µ ` n, and s a square of the Ferrers diagram of µ, let l(s), a(s), l′(s), a′(s) denote the leg, arm, coleg,
coarm, respectively, of s, i.e. the number of squares above s, to the right of s, below s, and to the left of
s, as in Figure 1. Furthermore let

M = (1− q)(1− t), Bµ =
∑
s∈µ

tl
′
qa
′
, Πµ =

∏
s∈µ

s 6=(0,0)

(1− tl
′
qa
′
), wµ =

∏
s∈µ

(qa − tl+1)(tl − qa+1).

(3)

The known expansion

en(X) =
∑
µ`n

H̃µ(X; q, t)MΠµBµ
wµ

(4)
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Fig. 1: The leg, coleg, arm, and coarm of a square

then implies

∇en(X) =
∑
µ`n

TµH̃µ(X; q, t)MΠµBµ
wµ

. (5)

Letting Fµ = 〈H̃µ, h
n
1 〉, by taking the scalar product of both sides of (5) with respect to hn1 we get

Hilb(DRn) =
∑
µ`n

TµFµMΠµBµ
wµ

. (6)

Let ⊥ be the operation on symmetric functions which is adjoint to multiplication with respect to the
Hall scalar product, i.e. for any symmetric functions f, g, h,

〈f⊥g, h〉 = 〈g, fh〉. (7)

If µ ` n and ν ` n − 1, then ν → µ means ν is obtained from µ by removing some corner square of
µ, and µ ← ν means µ is obtained from ν by adding a single square to the Ferrers shape of ν. Define
generalized skew Pieri coefficients cf

⊥

µ,ν(q, t) and Pieri coefficients dfµ,ν(q, t) by the formulas

f⊥H̃µ(X; q, t) =
∑
ν

ν→µ

cf
⊥

µ,ν(q, t)H̃ν(X; q, t) (8)

fH̃ν(X; q, t) =
∑
µ

µ←ν

dfµ,ν(q, t)H̃µ(X; q, t). (9)

Many of the identities in this paper are expressed using plethystic notation, defined as follows. If
pk(X) =

∑
i x

k
i is the kth power sum, then for any expression E, the plethystic substitution of E into
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pk is obtained by replacing all indeterminates in E by their kth powers. We denote this by pk[E], so for
example

pk[X(1− t)] = pk(X)(1− tk). (10)

For any symmetric function f(X), we define f [E] by first expressing f as a polynomial in the pk, then
replacing each pk by pk[E].

The cf
⊥

µ,ν and the dfµ,ν are related via [GH02, (3.5)]

cf
⊥

µ,νwν = dωf [X/M ]
µ,ν wµ, (11)

where ω is the linear operator on symmetric functions satisfying ωsλ = sλ′ . Note dωh1[X/M ]
µ,ν = d

h1[X]
µ,ν /M .

We abbreviate ch1⊥
µ,ν (q, t) by cµ,ν and dh1[X/M ]

µ,ν (q, t) by dµ,ν .
A special case of Macdonald’s Pieri formulas [Mac95, Section 6.6] gives an expression for dµ,ν as

a quotient of factors of the form (taqb − tcqd), where a, b, c, d have simple combinatorial descriptions.
Garsia found a simplification in this formula, which Garsia and Zabrocki used to obtain the k = 1 case
of the following summation formula [GZ05]. The proof of the result for general k appears in [BGHT99]
and [Gar10].

∑
µ

µ←ν

dµ,νT
k =

{
1/M if k = 0,

(−1)k−1ek−1[MBν − 1]/M if k ≥ 1,
(12)

where throughout this article T is an abbreviation for Tµ/Tν . Eq. (12) is closely related to a corresponding
summation formula involving the cµ,ν [GT96, Theorem 2.2].

Identity (12) can be recast in the following form.

Lemma 1

∑
µ

µ←ν

dµ,ν(1− T )T k =

{
0 if k = 0,

(−1)k−1ek[MBν ]/M if k ≥ 1
. (13)

The following simple fact will be useful later.

Lemma 2

(−1)k−1ek[M ]/M =
tk − qk

t− q
k ≥ 1. (14)

3 A New Recursive Procedure to Generate the Hilbert Series
By definition we have

e⊥1 H̃µ(X; q, t) =
∑
ν

ν→µ

cµ,νH̃ν(X; q, t). (15)
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Taking the scalar product of both sides with respect to hn−11 we get

〈e⊥1 H̃µ, h
n−1
1 〉 = 〈H̃µ, e1h

n−1
1 〉 = Fµ =

∑
ν

ν→µ

cµ,νFν . (16)

Plugging this recurrence for the Fµ into (6) yields

Hilb(DRn) =
∑
µ`n

TµMΠµBµ
wµ

∑
ν

ν→µ

cµ,νFν (17)

=
∑
ν`n−1

FνM
∑
µ

µ←ν

BµΠµcµ,νTµ
wµ

. (18)

Now from (3) we see

Bµ = Bν + T, Πµ = Πν(1− T ). (19)

Using this and the f = e1 case of (11) in (18) we get

Hilb(DRn) =
∑
ν`n−1

TνFνMΠν

wν

∑
µ

µ←ν

dµ,ν(Bν + T )(1− T )T. (20)

By (13) this implies

Hilb(DRn) =
∑
ν`n−1

TνFνMΠν

wν

(
e1[MBν ]

M

e1[MBν ]

M
− e2[MBν ]

M

)
. (21)

(Although e1[MBν ]/M can be expressed more simply as e1[Bν ], leaving (21) in the above form will
prove more useful in the sequel.)

We now iterate the argument; first re-index the sum in (21) as a sum over µ ` n− 1, and replace Fµ by∑
ν→µ cµ,νFν . Then write Bµ as Bν + T as before, and reverse summation to get

Hilb(DRn) =
∑
ν`n−2

TνFνMΠν

wν
(22)

×
∑
µ

µ←ν

dµ,ν(1− T )T

(
e1[M(Bν + T )]

M

e1[M(Bν + T )]

M
− e2[M(Bν + T )]

M

)
.

Now for any alphabets X , Y we have

ek [X − Y ] =

k∑
j=0

ej [X] ek−j [−Y ] . (23)

Hence for k ≥ 1

(−1)k−1
ek[M(Bν + T )]

M
= bk + T kak +

k−1∑
j=1

−MbjT
k−jak−j , (24)
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where we have abbreviated (−1)j−1ej [M ]/M by aj and (−1)j−1ej [MBν ]/M by bj = bj(ν). Here we
have used the fact that ek[MT ]/M = T kek[M ]/M (since for any expression pj [XT ] = T jpj [X]). Note
also that a1 = 1. The inner sum in (22) thus becomes∑

µ
µ←ν

dµ,ν(1− T )T
(
(b1 + Ta1)2 + b2a1 + T 2a2 −Mb1Ta1

)
(25)

= b31 + 2b1a1b2 + a21b3 + a1b2b1 −Mb1a
2
1b2 + a1a2b3 (26)

by (13).
Let

A1 = b1 (27)

A2 = b21 + b2a1 (28)

A3 = b31 + 2b1a1b2 + a21b3 + a1b2b1 −Mb1a
2
1b2 + a1a2b3. (29)

The above discussion implies

Theorem 1 For p ∈ N, 1 ≤ p ≤ n,

Hilb(DRn) =
∑

ν`n−p+1

TνFνMΠν

wν
Ap, (30)

where Ap = Ap(ν) is a certain polynomial in the ai, bi. Moreover, Ap can be calculated recursively from
Ap−1 by the following procedure. First replace each bk in Ap−1 by bk + T kak −

∑k−1
j=1 MbjT

k−jak−j .
Then multiply the resulting expression out to form a polynomial in T , say∑

j

cjT
j . (31)

Finally, replace T j by bj+1, i.e.

Ap =
∑
j

cjbj+1. (32)

(We replace T j by bj+1 since, after multiplying the expression above out to get
∑
cjT

j , we still have
another factor of T coming from the outer sum. Applying (13) replaces T j+1 by bj+1.)

We now give a non-recursive expression for Ap. Let Qn denote the set of all n × n upper-triangular
matrices C of nonnegative integers which satisfy

−
j−1∑
i=1

cij +

n∑
i=j

cji = 1, for each j, 1 ≤ j ≤ n. (33)
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For example,

Q1 = {
[
1
]
} (34)

Q2 = {
[
1 0
0 1

]
,

[
0 1
0 2

]
} (35)

Q3 = {

1 0 0
0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 0 2

 ,
0 1 0

0 2 0
0 0 1

 ,
0 1 0

0 1 1
0 0 2

 ,
0 1 0

0 0 2
0 0 3

 ,
0 0 1

0 1 0
0 0 2

 ,
0 0 1

0 0 1
0 0 3

}.
(36)

Geometrically, the condition (33) says that for all j, if we add all the entries of C in the jth row together,
and then subtract all the entries in the jth column above the diagonal, we get 1. Note that these conditions
imply that each row of C must have at least one positive entry.

ForC ∈ Qn, let Pos(C) denote the multiset of positive entries inC, and pos(C) its cardinality. Matrices
of this kind can be generated recursively, in a manner similar to the recursion generating the polynomials
Ap, and using this one can prove the following.

Theorem 2 For 1 ≤ p ≤ n and Ap, bj , aj as above,

Ap =
∑
C∈Qp

(−M)pos(C)−n
∏

cii∈Pos(C)

bcii
∏

cij∈Pos(C)

i<j

acij . (37)

Corollary 1

Hilb(DRn) =
∑
C∈Qn

(−M)pos(C)−n
∏

cij∈Pos(C)

1≤i≤j≤n

[cij ]q,t, (38)

where [k]q,t = (tk − qk)/(t− q) is the q, t-analog of the integer k.

Example 1 The weights associated to the elements of Q3, listed in the same left-to-right order as in (36)
are

1, t+ q, t+ q, −M(t+ q), (t+ q)(t2 + qt+ q2), t+ q, t2 + qt+ q2. (39)

Thus Hilb(DR3) is the sum of these terms, namely

1 + 2q + 2t+ 2q2 + 3qt+ 2t2 + q3 + q2t+ qt2 + t3. (40)

The sequence 1, 2, 7, 40, 357, 4820, . . . consisting of the cardinalities of the sets Q1, Q2, Q3, . . . form
entry A008608 in Sloane’s on-line encyclopedia of integer sequences. In fact, it was comparing the
number of monomials in An for small n with sequences in Sloane’s encyclopedia that led the author to
the discovery of the non-recursive expression for the An in terms of the elements of Qn. The sequence
was introduced to Sloane’s list by Glenn Tesler, who in a private conversation with the author said they
arose in unpublished work of Tesler’s from the late 1990’s on plethystic expressions for Macdonald’sDn,r

operators. Although Tesler doesn’t recall any further details about this work, we will refer to elements of
Qn as “Tesler matrices”.

The explicit formula (38) for Hilb(DRn) can be formulated as a constant term identity.
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Corollary 2 For n ≥ 1, Hilb(DRn) is the coefficient of z1z2 · · · zn in

1

(−M)n

n∏
i=1

(1− zi)(1− qtzi)
(1− qzi)(1− tzi)

∏
1≤i<j≤n

(1− zi/zj)(1− qtzi/zj)
(1− qzi/zj)(1− tzi/zj)

. (41)

4 The m-parameter
The formula ∇en for the Frobenius series of DRn is a special case of a more general result (also due to
Haiman [Hai02]) which says that for any positive integer m, ∇men is the Frobenius series of a certain
Sn-module DR(m)

n . Hence, from (5) we have

Hilb(DR(m)
n ) = 〈∇men, hn1 〉 (42)

=
∑
µ
µ`n

Tmµ FµMΠµBµ

wµ
. (43)

The methods of the previous section can be generalized to show that for any 1 ≤ p ≤ n,

Hilb(DR(m)
n ) =

∑
µ`n−p+1

Tmν FνMΠν

wν
A(m)
p , (44)

where A(m)
p = A

(m)
p (µ) is a polynomial in the bj , aj as before. We have A(m)

1 (µ) = b1, and for p >
1, we can construct A(m)

p recursively by the following procedure. First, replace each bk in A
(m)
p−1 by

bk + T kak +
∑k−1
j=1 −MbjT

k−jak−j . Then, multiply the resulting expression out to form a polynomial
in T say ∑

j

cjT
j . (45)

Finally, replace T j by bj+m, i.e.

A(m)
p =

∑
j

cjbj+m. (46)

In terms of the Tesler matrices, we want the “hook sums” to be equal to (1,m,m, . . . ,m) instead of
(1, 1, . . . , 1). To be precise, define Q(m)

n to be the set of upper-triangular matrices C of nonnegative
integers satisfying

−
j−1∑
i=1

cij +

n∑
i=j

cji =

{
1 if j = 1,

m if 2 ≤ j ≤ n
. (47)

We get the following extensions of the earlier results.
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Theorem 3 For 1 ≤ p ≤ n, m ≥ 1, and A(m)
p , bj , aj as above,

A(m)
p =

∑
C∈Q(m)

p

(−M)pos(C)−n
∏

cii∈Pos(C)

bcii
∏

cij∈Pos(C)

i<j

acij . (48)

Furthermore, the special case p = n of (44) reduces to

Hilb(DR(m)
n ) =

∑
C∈Q(m)

n

(−M)pos(C)−n
∏

cij∈Pos(C)

1≤i≤j≤n

[cij ]q,t. (49)

Corollary 3 For n ≥ 1, Hilb(DR(m)
n ) is the coefficient of z1zm2 z

m
3 · · · zmn in

1

(−M)n

n∏
i=1

(1− zi)(1− qtzi)
(1− qzi)(1− tzi)

∏
1≤i<j≤n

(1− zi/zj)(1− qtzi/zj)
(1− qzi/zj)(1− tzi/zj)

. (50)

5 Conjectures and Open Questions
5.1 Tesler matrices with more general hook sums
In general the coefficient of zα1

1 zα2
2 · · · zαnn in (50) is not a positive polynomial in q, t, but Maple calcula-

tions suggest it is positive if the αi are positive and nondecreasing.

Conjecture 1 For n ≥ 1 and α the reverse of a partition (so 1 ≤ α1 ≤ α2 ≤ · · · ≤ αn)

1

(−M)n

n∏
i=1

(1− zi)(1− qtzi)
(1− qzi)(1− tzi)

∏
1≤i<j≤n

(1− zi/zj)(1− qtzi/zj)
(1− qzi/zj)(1− tzi/zj)

∣∣
z
α1
1 z

α2
2 ···z

αn
n
∈ N[q, t]. (51)

Equivalently, the weighted sum over Tesler matrices with hook sums α1, . . . , αn is in N[q, t].

Remark 1 The argument proving Theorem 3 shows that if α1 = 1, the coefficient of zα1
1 zα2

2 · · · zαnn in
(51) can be obtained by starting with ∇α2en, applying e⊥1 , then applying ∇α3−α2 , applying e⊥1 again,
then applying∇α4−α3 , etc. The author doesn’t know if these polynomials have a representation-theoretic
interpretation for α 6= (1,m,m, . . . ,m).

5.2 A refinement of the q, t-positivity
Note that [k]q,t can be expressed as sk−1({q, t}), i.e. the (k − 1)st complete homogeneous symmetric
function evaluated in the set of variables {q, t}. Also, −M = t + q − 1 − qt equals s1 − 1 − s1,1, also
in the set of variables {q, t}. In (38) we can substitute in these Schur function formulations for [k]q,t and
−M , multiply everything out using the Pieri rule for Schur function multiplication, and thereby obtain a
formula for Hilb(DRn) in terms of Schur functions in the set of variables {q, t}. If we then cancel terms
of the form sλ where λ has more than two parts (which becomes zero since our set of variables has only
two elements) it appears that the resulting expression is Schur-positive. For example, for n = 3 the terms
from (39) become

1, s1, s1, (s1 − 1− s1,1)s1, s1s2, s1, s2, (52)
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and the sum of these equals 1 + 2s1 + 2s2 + s1,1 + s2 − s1,1,1 + s3. Since s1,1,1({q, t}) = 0, we can
remove this leaving

Hilb(DR3) = 1 + 2s1 + 2s2 + s1,1 + s2 + s3. (53)

F. Bergeron [Ber09, p.196] has previously conjectured a stronger statement, namely that

Hilb(DRn) =
∑
σ∈Sn

hλ(σ)({q, t}), (54)

i.e. that for each permutation on n elements, there is some way of defining a partition λ(σ) such that the
sum of the hλ(σ) gives Hilb(DRn). Here hλ =

∏
i sλi as before. When n = 3, the expansion is

Hilb(DR3) = 1 + 2h1 + h2 + h1,1 + h3, (55)

in agreement with (53). Bergeron further conjectures that these sums have the remarkable property that if
we evaluate them in the set of variables {q1, q2, . . . , qk} we get the Hilbert series of diagonal coinvariants
in k sets of variables, for any k ≥ 1. We hope that further study of how the cancellation in identity (38)
results in positivity will lead to progress on the k = 2 case of Bergeron’s conjecture.
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