
AofA’12 DMTCS proc. AQ, 2012, 125–140

Biased Boltzmann samplers and generation
of extended linear languages with shuffle

Alexis Darrasse1, Konstantinos Panagiotou2, Olivier Roussel1, and Michèle Soria1

1Laboratoire d’Informatique de Paris 6 — Équipe APR — UPMC — 4, Place Jussieu — Paris, France
2Max-Planck-Institute for Informatics — Campus E1.4 — 66123 Saarbrücken, Germany

This paper is devoted to the construction of Boltzmann samplers according to various distributions, and uses stochastic
bias on the parameter of a Boltzmann sampler, to produce a sampler with a different distribution for the size of the
output. As a significant application, we produce Boltzmann samplers for words defined by regular specifications
containing shuffle operators and linear recursions. This sampler has linear complexity in the size of the output, where
the complexity is measured in terms of real-arithmetic operations and evaluations of generating functions.

Keywords: random sampling, Boltzmann samplers, biased distributions, generating functions, combinatorial speci-
fications, shuffle operator

1 Introduction
In combinatorial modeling, random sampling is an important tool for exploring properties of objects,
validating models and software testing. The framework of Analytic Combinatorics [FS08] provides two
generic methods for uniform sampling of objects belonging to combinatorial classes described by their
specifications (uniform sampling means that all objects of same size have the same probability). In the
recursive method, given a combinatorial class C and an integer n, the samplers produce a random object
of C with size n, by computing enumeration sequences [FZVC94]. In the Boltzmann method, given a
class C and a parameter x, the samplers produce a random object of C with a fluctuating size, by computing
generating functions [DFLS04].

For Boltzmann samplers, the output distribution depends on the parameter x. This property is classi-
cally used for aiming at a certain expected size of the output, but it can also be used in order to reach a
particular distribution. In this paper we investigate cases when x is biased with a stochastic value: starting
with a random sampler that produces objects of a class C with output distribution, a stochastic perturbation
of x leads to a random sampler that produces the same objects, with a different output distribution. This
transformation, that only operates on the parameter, can be seen as a ”random samplers transform” that
uses samplers as black boxes (the sampling algorithms are not modified).

An important motivation for this work is to propose Boltzmann samplers capable to deal with the shuffle
operator on languages. Languages, specified by recursive grammars with union and product operators,

Funded by project MAGNUM — ANR 2010 BLAN 0204

1365–8050 c© 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAQind.html

126 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

do belong to the Boltzmann model of random generation, but the shuffle product cannot be handled in
the classical Boltzmann framework. However, the shuffle product is an important and useful operator
on languages, both for its structural properties and its applications, for example in hashing and program
verification (see e.g. [FGT92, DGG+06, MZ08]).

The main difficulty with the shuffle product is to deal at the same time with both ordinary and exponen-
tial generating functions. Indeed, languages are naturally associated with ordinary generating functions
A(z) =

∑
anz

n, where an is the number of words of size n, whereas the shuffle product only trans-
lates nicely in terms of exponential generating functions Â(z) =

∑
anz

n/n!: the exponential generating
function of the shuffle product of languages is the product of the exponential generating functions of its
components.

Regarding Boltzmann samplers, these two worlds correspond to different probabilities for random gen-
eration: in the case of an ordinary Boltzmann sampler with parameter x, which we denote by ΓA(x), a
word γ of size n in A is generated with probability P (γ) = xn

A(x) , whereas in the case of an exponential

Boltzmann sampler Γ̂A(x), the probability is P (γ) = xn

n!“A(x)
.

The ordinary and exponential generating functions of a language are related by the Borel-Laplace trans-
form. Using this transform, it is easy to see that there is an appropriate density for biasing an exponential
Boltzmann sampler Γ̂ into an ordinary Boltzmann sampler Γ. Unfortunately the inverse transformation
leads to an impossible problem of moments.

Our solution is to make a topdown decomposition according to the specification of the language, and
construct an exponential Boltzmann sampler from biased exponential Boltzmann samplers for its compo-
nents. The central idea in all our algorithms is that of biasing: when a Boltzmann sampler for a class A
cannot be constructed directly, we construct instead a Boltzmann sampler for a derived class B and then
bias the parameter of the Boltzmann sampler for B with a probabilistic value in order to get back a correct
generation on A.

The family of languages that we consider in this paper consists in languages specifiable in terms of
operators union, product and shuffle, with linear recursions. An important property of these languages
is that their ordinary generating functions are rational functions. We construct an ordinary Boltzmann
sampler for a language in this family by following its specification; whenever a shuffle operator appears,
there is no simple way to construct an ordinary Boltzmann sampler, but it is easy to obtain an exponential
sampler. The situation is reversed for the classical product operator: the ordinary sampler is elementary
whereas the construction of an exponential sampler is complex and entails the computation of derivative
samplers. Our solution consists in going back and forth between the ordinary and exponential worlds, and
create bridges between ordinary and exponential Boltzmann samplers. The realization of these Boltzmann
samplers relies on the evaluation of generating functions, and since all generating functions of the consid-
ered languages are rational functions, we can devise an evaluation process based on some computations
of resultants.

In a previous paper [DPRS10] we worked on regular specifications containing shuffle operators, and
designed Boltzmann generation algorithms with linear complexity for approximate size sampling. In
that case, we were restricted to regular (rational) languages, since this family is closed under the shuffle
operator (see e.g. [Eil74]), and it is always possible to avoid dealing directly with the shuffle operator,
via rephrasing the specification, or by giving an automaton description, and very efficient algorithms have
been designed [Den94, DZ99, BG12].

In this paper, we deal with a more general family of languages, strictly containing the class of linear

Biased Boltzmann samplers and generation of extended linear languages with shuffle 127

languages (which is not closed under the shuffle operator), and we still propose Boltzmann samplers with
linear complexity.

Outline of the paper Section 2 presents the general principle of biasing Boltzmann samplers with
stochastic values, and shows three cases of application: biasing Boltzmann sampler for pointed objects
into a Boltzmann sampler for non pointed objects; transforming an exponential Boltzmann sampler into
an ordinary Boltzmann sampler; and providing Boltzmann samplers for the box product and the ordered
product. Section 3 is devoted to the presentation of Boltzmann samplers for extended linear languages
with shuffle; we first recall the definition and some useful properties of the shuffle operator; then we
define our family of extended linear languages, which are languages specifiable in terms of operators
union, product and shuffle, with linear recursions; and finally we state the general sampling algorithm for
such specifications, which implies to derive parametrized exponential Boltzmann samplers for the vari-
ous operators of the specifications. In Section 4, we give the precise algorithms for sampling languages
composed with union, product, sequence and shuffle operators, according to parametrized exponential
Boltzmann distributions; and Section 5 shows a combinatorial interpretation of these algorithms, explain-
ing how objects are constructed and affected by the various operators. Section 6 discusses complexity
and implementation issues: we first state that the sampling algorithm of Section 3 has linear complexity,
where the complexity is measured in terms of real-arithmetic operations and evaluations of generating
functions; we also discuss the cost of drawing the various random variables that appear in the stochastic
biasing process; and finally we show how to rely on the rationality of the involved generating functions in
order to make efficient computations.

This is an extended abstract, and the proofs are omitted because of the lack of space.

2 Boltzmann generation with a biased parameter
In this section, we present the general principle of biasing Boltzmann samplers with stochastic values,
and show three cases of application. First biasing Boltzmann sampler for generating standard objects
from pointed objects. Second we show how to transform an exponential Boltzmann sampler into an
ordinary Boltzmann sampler, on the basis of the Borel-Laplace transform. Third we provide exponential
Boltzmann samplers for two additional operators: the box product and the ordered product.

2.1 Boltzmann samplers
Let C be a combinatorial class, with a size function | · | : C → N. Given a parameter x, a Boltzmann
sampler for class C is a probabilistic algorithm that generates any object γ in C with probability which
is essentially proportional to x|γ|. More precisely, if f is a function depending only on the size, and g a
function depending only on the parameter, the output distribution is

P(x, γ) =
f(|γ|)g(x)x|γ|∑
γ∈C f(|γ|)g(x)x|γ|

.

This definition covers the two classical Boltzmann samplers:

• the ordinary sampler ΓC(x), for non labelled objects and ordinary generating series, that samples
with probability x|γ|

C(x) , with C(x) =
∑
γ x
|γ|, where f(|γ|) = 1 = g(x);

128 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

• the exponential sampler Γ̂C(x), for labelled objects and exponential generating series, that samples
with probability x|γ|

|γ|! ·
1

Ĉ(x)
, with “C(x) =

∑
γ
x|γ|

|γ|! , where f(|γ|) = 1/|γ|! and g(x) = 1.

But we can also define Boltzmann samplers associated with various distributions. For example we shall
be dealing with distributions involving derivatives.

• An algorithm Γ̂C(x, k) is said to be an (x, k)-exponential Boltzmann sampler if the output distri-
bution is equivalent to (2.1), the normalizing constant being “C(k)(x) =

∑
γ;|γ|≥k

x|γ|−k

(|γ|−k)! , with
g(x) = x−k and f(|γ|) = 1

(|γ|−k)! if |γ| ≥ k, otherwise f(|γ|) = 0.

Pk(x, γ) =
1“C(k)(x)

· x|γ|−k

(|γ| − k)!
if |γ| ≥ k , and otherwise 0. (2.1)

• An algorithm
.
ΓC(x, k) is said to be an (x, k)-exponential pointed Boltzmann sampler if the output

distribution is equivalent to (2.2), with normalizing constant “G(k)(x) =
∑
γ;|γ|≥k

x|γ|

(|γ|−k)! , with
g(x) = 1 and f(|γ|) = 1

(|γ|−k)! if |γ| ≥ k, otherwise f(|γ|) = 0.

Pk(x, γ) =
1“G(k)(x)

· x|γ|

(|γ| − k)!
if |γ| ≥ k , and otherwise 0. (2.2)

Notice that Γ̂C(x) ∼ Γ̂C(x, 0) ∼
.
ΓC(x, 0), where A ∼ B means that the two algorithms A and B output

the same objects with the same probabilities.
(Also notice that a similar definition can be given for (x, k)-ordinary Boltzmann samplers, pointed or
not.)

2.2 Biasing with a stochastic value
Given a combinatorial class C, and a Boltzmann sampler ΓC(x) with output distribution p(γ, x), we shall
stochastically perturbate the parameter x in order to produce a Boltzmann sampler for C with a different
output distribution q(γ, x). Consider δCx(t) to be a probability distribution on domain D, RCx a random
variable following the distribution defined by δCx , and u a realization of RCx; then by calling ΓC(ux), we
get a random object γ with probability q(γ, x) =

∫
D
p(γ, tx) δCx(t) dt.

Algorithm 1 Biased Boltzmann sampler
Input: A Boltzmann sampler ΓC(x) with output distribution p(γ, x),

and a sampler for the variable RCx following a probability distribution δCx on domain D
Output: An object γ ∈ C with probability q(γ, x) =

∫
D
p(γ, tx) δCx(t) dt

u← draw
(
RCx
)

return ΓC(ux)

Remark. Beware that, in this algorithm, one can pick the input distribution p(γ, x) and the distribution
δCx freely, but we got as a result the output distribution q(γ, x). In practive we are more often faced with
the following problem: given the input and output distributions p and q, what is the distribution δ which
performs the transformation? This problem is known as a moments problem, and unfortunately has often
no solution.

Biased Boltzmann samplers and generation of extended linear languages with shuffle 129

2.2.1 Biasing a pointed Boltzmann sampler into a non pointed Boltzmann sam-
pler

Given a pointed Boltzmann sampler of order k, it is possible to derive a non pointed Boltzmann sampler
of order k − 1. The proposition below states this result in the case of exponential samplers, but it also
holds for ordinary samplers (with the appropriate definitions of derivating and pointing).

Proposition 2.1 Given
.
ΓC(x, k), an exponential pointed sampler of order k for a class C, one gets an

exponential sampler of order k − 1 for C, by applying Algorithm 1, with the probability distribution

δCx(u) = x Ĝ(k)(ux)

Ĉ(k−1)(x)
x−ku−k on [0, 1].

Remark. Notice that the inverse transformation (get
.
ΓC(x, k) from Γ̂C(x, k−1)) is impossible (moments

problem with no solution). However other methods do exist for obtaining a pointed Boltzmann sampler
from a non pointed Boltzmann sampler (see e.g. the way of pointing specifications used for the generation
of trees in [DFLS04]).

Example. The exponential generating function of the class of (rooted) Cayley trees satisfies the recursive
equation “C(z) = z exp(“C(z)). Hence a Boltzmann sampler Γ̂C(x) for rooted Cayley trees is simply the
following [DFLS04]: make a root, draw the number k of root-subtrees according to a Poisson law with
parameter “C(x), and recursively call k independant Γ̂C(x) for generating the root-subtrees.
It is now easy to design an exponential Boltzmann sampler Γ̂D(x) for the class D of unrooted Cayley
trees: the number of unrooted Cayley trees is nn−2, and the generating functions satisfy z“D′(z) = “C(z).
Hence we get a sampler for Γ̂D(x) by drawing u with density “C(tx)/t“D(x), and launching Γ̂C(ux).

2.2.2 Biasing an exponential Boltzmann sampler into an ordinary Boltzmann
sampler

An exponential Boltzmann sampler Γ̂C(x) for a class C can be biased appropriately, so that the output
follows the ordinary Boltzmann distribution.

Proposition 2.2 Let Γ̂C(x) be an exponential sampler for a class C. The biased sampler of Algorithm 1,

with the probability distribution δCx(u) = Ĉ(xu)
C(x) e

−u on [0,+∞), is an ordinary Boltzmann sampler for C.

The fact that δCx(u) is a probability distribution on [0,+∞) is a direct consequence of the well-known

Borel-Laplace transform, and the result follows from evaluating
∫ ∞
0

(xu)n

n!“C(xu)
δCx(u) du. The algorithm

transforming an exponential Boltzmann sampler into an ordinary Boltzmann sampler will be of important
use in the rest of the paper; we thus repeat it here, though it is a simple instanciation of Algorithm 1.

Algorithm 2 ΓC(x): Boltzmann sampler for ΓC being given Γ̂C
Input: A real number x ∈ [0, ρC), and and exponential Boltzmann sampler for a class C
Output: An object γ ∈ C with probability Px(γ) = x|γ|/C(x)
u← draw

(
RCx
)

return Γ̂C(ux)

130 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

2.2.3 Other transformations: box-product and ordered-product
By combining Boltzmann samplers biased with an appropriate stochastic value, we can derive Boltzmann
samplers for new operators on labelled objects: the box-product [FS08] and the ordered-product [BLL98].
Both operators add extra constraints in the way of labelling a pair of objects. Recall that in a standard
labelled product C = A ? B, a pair (α, β) is labelled by a permutation of {1, · · · , |α| + |β|} (which is
consistent with both permutations labelling α and β), and the resulting exponential generating function is“C(z) = Â(z) · “B(z). In the case of a box-product C = A� × B, the labels of a pair (α, β) satisfy the
constraints of the standard product. In addition, the smallest label must be attached to an atom of α; the
resulting exponential generating function satisfies “C(z) =

∫ z
0
Â′(t)“B(t) dt. For an ordered-product C =

A�B, in a pair (α, β) the |α| smallest labels must be attached to α; and the generating function shows a
convolution “C(z) = A0

“B(z) +
∫ z
0
Â′(z − t)“B(t) dt.

Proposition 2.3 The two following algorithms are correct exponential Boltzmann samplers for respec-
tively the box-product and the ordered-product.

Algorithm 3 Boltzmann sampler for box-product C = A� × B
Input: Boltzmann samplers Γ̂A(x, 1) and Γ̂B(x), and a sampler for the random variable RCx following a

probability distribution δ(t) = x“A′(tx)B̂(tx)

Ĉ(x)
on [0, 1].

Output: An object γ = (α, β) ∈ C with probability xγ

γ! Ĉ(x)
.

u← draw
(
RCx
)

α← Γ̂A(xu, 1) ; β ← Γ̂B(xu)
return γ = boxProduct(α, β)

Algorithm 3 is the basis for generating alternating permutations [RS09], and more generally, structures
defined by combinatorial differential equations of first order [BRS10].

Algorithm 4 will be used in this paper for generating words with shuffle (see Section 4.2).

Algorithm 4 Boltzmann sampler for ordered-product C = A�B
Input: Boltzmann samplers Γ̂A(x, 1) and Γ̂B(x), and a sampler for the random variable RCx following

the probability distribution δ(t) =
“A′(x−t)B̂(t)

Ĉ(x)−A0B̂(z)
on [0, x]

Output: An object γ = (α, β) ∈ C with probability x|γ|

|γ|! Ĉ(x)
.

if Bernoulli
(
A0B̂(x)

Ĉ(x)

)
then

Draw α ∈ A0 uniformly; β ← Γ̂B(x)
else

u← draw
(
RCx
)

α← Γ̂A(x− u, 1) ; β ← Γ̂B(u)
end if
return γ = orderedProduct(α, β)

Biased Boltzmann samplers and generation of extended linear languages with shuffle 131

3 Samplers for extended linear languages with shuffle
In this section, we will present an application of the ideas presented previously to the random sampling
of words in some formal languages. We are interested in a Boltzmann sampler for the shuffle product of
languages. We will first define the shuffle operator, and then recall some facts about formal languages.
Eventually, we will define a class of languages on which our algorithms are correct.

3.1 The shuffle product
We present a common and useful operator, the shuffle product (or Hurwitz product). It is a well-known
and classical operator on languages. The shuffle product of two words u and v is the set of all the possible
words obtained by interleaving the letters of u and v.

Definition 3.1 Let Σ denote an alphabet, and consider two words u and v in Σ∗. We define their shuffle
product as u � v = {u1v1u2v2 . . . unvn | u = u1 . . . un, v = v1 . . . vn,∀1 ≤ i ≤ n : ui, vi ∈ Σ∗},
or equivalently — with x, y ∈ Σ — by the recursive definition: u � ε = ε � u = u and xu � yv =
x(u� yv) + y(xu� v).

Given two languages A and B on disjoint alphabets, their shuffle product is the language

C = A� B = {u� v | u ∈ A, v ∈ B}.

The condition for the alphabets to be disjoint is technical, and is the same as for the classical disjoint
union operator + on languages. The minimal condition is that the language A� B be unambiguous. It is
well-known that the counting sequence for C satisfies cn =

∑n
p=0

(
n
p

)
apbn−p, and this relation translates

into the product of exponential generating functions “C(z) = Â(z)× “B(z).
However, the shuffle operator applies to words, which are unlabelled objects, associated to ordinary

generating functions. But there exists no direct equation linking the ordinary generationg function C(z)
of C and A(z) and B(z). Nonetheless we have the following lemma.

Lemma 3.2 Let A(z) and B(z) be two generating function which are rational over Z. Let C(z) be the
generating function corresponding to cn =

∑n
p=0

(
n
p

)
apbn−p. Then C(z) is rational over Z.

This lemma will be really useful later (see Section 6.2) as it gives some sort of closure under the shuffle
product in the same way as the classical product, the sum and the sequence.

In this paper, our solution for sampling consists in going back and forth between the ordinary and expo-
nential worlds, and create bridges between an ordinary Boltzmann sampler ΓC(x) and its corresponding
exponential sampler Γ̂C(x). The way from exponential to ordinary, i.e. constructing an ordinary Boltz-
mann sampler out of an exponential one, can be achieved by biasing the exponential sampler with an
appropriate density arising from the Laplace transform (see Proposition 2.2). On the contrary, it is not
feasible to make a direct converse transformation, since this leads to an impossible moment problem. We
thus recursively rely on the specification and study the construction of an exponential Boltzmann sam-
pler for the sum, product and shuffle of two languages, given exponential Boltzmann samplers for the
components.

3.2 Extended linear languages
In this subsection, we define the class of languages we are interested in, which stricly contains linear
languages. First we recall some long-known facts about languages.

132 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

Regular languages The class of regular languages is one of the simplest classes of languages. Kleene’s
theorem shows that this class of languages can be defined in several equivalent ways, by finite automata
and by regular expressions. For our purpose, we shall use the definition in terms of an unambiguous regu-
lar expression (or specification), where the term unambiguous means that for every word in the language
there is exactly one way of parsing it according to the specification.
A regular language can be described unambiguously by a (non-recursive) regular expression that only
involves letters of a finite alphabet, and the three combinatorial operations of disjoint union +, concate-
nation ·, and the Kleene star ∗.
Regular languages share the properties that their generating function is rational, and they are closed under
the shuffle operator� and substitution.

Linear languages Next we define the class of linear language.
A language is said to be linear if it can be generated using a linear grammar, that is a (finite) set of
production rules only involving union and product, with only linear recursion allowed: the production
rule S ∗→ αSβSγ where α, β, γ ∈ (Σ ∪Nonterminal)∗ never occurs.
These languages have the properties that their generating function is rational. However, they are not
closed under the shuffle product nor under substitution. For example, the well known language La,b =
{anbn | n ∈ N} is linear, but La,b � Lc,d is not even context-free.

Extended linear languages with substitution and shuffle We define a convenient class of languages
for our problem. It is the smallest class closed by shuffle product, usual product, union and linear recur-
sions, which contains linear languages.

Definition 3.3 The class V of extended linear languages with substitution and shuffle is the smallest class
of languages containing the linear languages, and closed upon the following schemas:

• X,Y ∈ V =⇒ L = X � Y ∈ V ;

• X1, · · · , Xi ∈ V =⇒ L = φ(L,X1, · · ·Xi) ∈ V where φ is any function linear in L and using
atoms, union + and product ×.

Thus, we are working on languages defined by linealy recursive specifications involving the union +, the
product× and the shuffle�. An example of language in V is {(ab∗)n(cd∗�(ε+e6))n | n ∈ N}. Indeed,
{xnyn | n ∈ N} is linear, hence in V ; any rational language is linear hence in V ; and V is closed under
shuffle and substitution. The class V shares many nice properties with regular languages:

Proposition 3.4 The class V is closed under union, product, shuffle product, and substitution. Moreover,
any language in this class has a rational generating function.

3.3 Boltzmann sampling
We now write the main algorithm, a Boltzmann sampler for languages in V . The algorithm switches to
the corresponding Boltzmann sampler according to the form of the specification, with a simple pattern-
matching. Furthermore, it biases the recursive calls in order to get an ordinary Boltzmann sampler. The
difficult part is concentrated on line 8 of this algorithm. Indeed, in order to have an ordinary Boltzmann
sampler for the shuffle, we have to bias and call an exponential Boltzmann sampler (see Section 2.2.2).
But this, in turn, implies the need of an exponential Boltzmann sampler for every other operator (union,
product and sequence). Moreover, the construction of an exponential sampler for the product leads to

Biased Boltzmann samplers and generation of extended linear languages with shuffle 133

Algorithm 5 ΓC(x): Ordinary Bolzmann sampler for C a regular language with shuffle
Input: A real x
Output: A word γ from C with a Boltzmann probability

1. if C = 1 then return ε
2. else if C = Zl where l ∈ Σ then return l
3. else if C = A+ B then return Γ (A+ B) (x)
4. else if C = A× B then return Γ (A× B) (x)
5. else if C = Seq(A) then return Γ (Seq(A)) (x)
6. else if C = A� B then
7. u← draw(RCx) where RCx follows the density δCx(u) = Ĉ(xu)

C(x) e
−u

8. return Γ̂ (A� B) (ux, 0)
9. end if

the apparition of derivatives in the combinatorial classes as well as in the generating functions, hence the
necessity of constructing exponential Boltzmann samplers of order k (see Section 4). To sum up,

we want ΓC(x)
we need−−−−−−−→

because of�
Γ̂C(x)

we need−−−−−−−→
because of×

Γ̂C(x, k).

Theorem 3.5 Suppose that a language C ∈ V is given by a finite specification. Then, Algorithm 5,
assembled from the specification of C, is an ordinary Boltzmann generator for C.

Moreover, Algorithm 5 has a linear complexity: the Boltzmann generator ΓC(x) assembled from the
specification of C given by the procedures from the next section has a complexity, measured in the number
of real-arithmetic operations, that is linear in the size of the generated string (see Section 6).

4 Construction of exponential Boltzmann samplers of order k
This section is devoted to the construction of exponential Boltzmann samplers of order k for the op-
erations of union, product, sequence and shuffle, as they are required by Algorithm 5. In each case,
considering C = A Op B, we derive the expression “C(k)(z) of the exponential generating function
of order k, and compute the probabilities that drive the sampler in order to get the output distribution
Px,k(γ) = 1

Ĉ(k)(x)

x|γ|−k

(|γ|−k)! for |γ| ≥ k. The general statement of this section is the following:

Proposition 4.1 Algorithms 6, 7, 8 and 9 define exponential Boltzmann samplers of order k respectively
for the constructors of union, product, sequence and shuffle.

4.1 Disjoint union
Let the language C be defined as the disjoint union of two other languages, i.e. C = A+B. The exponential
generating function of order k satisfies “C(k)(z) = Â(k)(z) + “B(k)(z), and the sampler works very similar
to the ordinary case.

4.2 Product
Let C = A × B. The description of exponential Boltzmann samplers for this construction relies on
expressing the exponential generating functions, and the involved probabilities.

134 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

Algorithm 6 Γ̂C(x, k): Exponential Bolzmann sampler for C = A+ B
Input: A real x and an integer k
Output: A word γ from C = A+ B with probability Px,k(γ)

if Bernoulli
Å“A(k)(x)

Ĉ(k)(x)

ã
then return Γ̂A(x, k) else return Γ̂B(x, k) end if

The exponential generating function for the product is “C(z) = |A0|“B(0)(z) +
∫ z
0
Â(1)(z − t)“B(t) dt.

By differentiating both sides of the equation k times with respect to z, we obtain“C(k)(z) =
k∑
`=0

|A`|“B(k−`)(z) +

∫ z

0

Â(k+1)(z − t)“B(t) dt. (4.1)

Before we construct an exponential Boltzmann sampler for the product of two languages we need
to express the involved distributions. Let P Ck,x be a discrete random variable drawn according to the
distribution

P
(
P Ck,x = `

)
=

1“C(k)(x)
·
®
|A`|“B(k−`)(x) if ` ∈ {0, . . . , k}∫ x
0
Â(k+1)(x− t)“B(t) dt if ` = k + 1

Moreover, let BCk,x be a continuous random variable whose probability density function is

t 7→ Â(k+1)(x− t)“B(t)∫ x
0
Â(k+1)(x− u)“B(u) du

where 0 ≤ t ≤ x (4.2)

With the above notation at hand, an exponential Boltzmann sampler for C works as in Algorithm 7.

Algorithm 7 Γ̂C(x, k): Exponential Bolzmann sampler for C = A× B
Input: A real x and an integer k
Output: A word γ from C = A× B with probability Px,k(γ)

`← draw
Ä
P Ck,x

ä
if 0 ≤ ` ≤ k then

Draw γA ∈ A` uniformly
γB ← Γ̂B(x, k − `)

else
t← draw

Ä
BCk,x

ä
γA ← Γ̂A(x− t, k + 1); γB ← Γ̂B(t, 0)

end if
return the word γAγB

4.3 Sequence
Suppose that a language is given by the sequence construction, i.e. C = 1 + A × C, where we assume
that A0 = ∅. An exponential Boltzmann sampler for C can be easily composed from the results in
Sections 4.1 and 4.2.

Biased Boltzmann samplers and generation of extended linear languages with shuffle 135

By equation 4.1, and using the fact A0 = ∅ we infer that “C(k)(z) satisfies the relation“C(k)(z) =
k∑
`=1

|A`|“C(k−`)(z) +

∫ z

0

Â(k+1)(z − t)“C(t) dt

Let SCk,x be a discrete random variable with distribution

P
(
SCk,x = `

)
=

1“C(k)(x)
·

0 if ` = 0

|A`|“C(k−`)(x) if ` ∈ {1, . . . , k}∫ x
0
Â(k+1)(x− t)“C(t) dt if ` = k + 1

Moreover, let BCk,x be a random variable as in Equation (4.2), where the function “B is replaced by “C.
Then an exponential Boltzmann sampler for the sequence construction is given by:

Algorithm 8 Γ̂C(x, k): Exponential Bolzmann sampler for C = Seq(A)

Input: A real x and an integer k
Output: A word γ from C = Seq(A) with probability Px,k(γ)

`← draw
Ä
SCk,x

ä
if ` = 0 then return ε
else if 1 ≤ ` ≤ k then

Draw γA ∈ A` uniformly
γC ← Γ̂C(x, k − `)

else
t← draw

Ä
BCk,x

ä
γA ← Γ̂A(x− t, k + 1); γC ← Γ̂C(t, 0)

end if
return the word γAγC

4.4 Shuffle
Finally, we consider the shuffle operation, and construct exponential Boltzmann samplers for the shuffle
of two languages. As already mentionned, if C = A� B, where the alphabets of A and B are disjoint,
then “C(x) = Â(x) · “B(x). In order to sample from the shuffle of two languages we need to express the
involved distribution, obtained by differentiating k times the previous equation. Let DCk,x be a random
variable with distribution

P
(
DCk,x = `

)
=

1“C(k)(x)

Ç
k

`

å
Â(`)(x)“B(k−`)(x) where ` ∈ {0, . . . , k}

With this notation at hand, an (x, k)-exponential Boltzmann sampler for the shuffle of two languages is
given by the following algorithm (where we assume that we have an algorithm for shuffling two given
words).

136 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

Algorithm 9 Γ̂C(x, k): Exponential Bolzmann sampler for C = A� B
Input: A real x and an integer k
Output: A word γ from C = A� B with probability Px,k(γ)

`← draw
Ä
DCk,x

ä
γA ← Γ̂A(x, `); γB ← Γ̂B(x, k − `)
nA ← |γA| and nB ← |γB|
Let bAeA = γA where |bA| = `, and bBeB = γB where |bB| = k − `
b← shuffle(bA, bB); e← shuffle(eA, eB)
return the word be

5 Combinatorial interpretation
In this section, we show how to combinatorially interpret the constructions and algorithms presented in
Section 4. Usually, when an object of size n is labelled, any of the n! possible labelling are allowed
(apart from symmetry). On the contrary, our interpretation here is based on a unique labelling of the
words. Using this vision, we interpret algorithms from the previous section, explaining how objects are
constructed and affected by the various combinatorial operators.

5.1 Canonically labelled classes

Definition 5.1 LetA be a language. We define the canonically labelled class “A as the class of words inA
with the unique labelling associating to each letter in a word its position. Moreover, we define a labelling
function L and an unlabelling function U : for a word w ∈ A, L(w) is the word w where each letter is
labelled by its position; and from any labelled word γ, U(γ) is the same word, but without any label.

The function L performs the unique labeling defined previously, and U removes the labels from an object.
Note that U ◦ L = id, but L ◦ U 6= id in general. In the following, when there is no risk of ambiguity,
we will consistently write “A for L(A). We will use the notation EGF(“A) for the exponential generating
function of the class “A. These labelled classes share most of their properties with the ordinary ones.

Lemma 5.2 Let A be a language, and “A = L(A). Then EGF(“A) = EGF(A) and Γ̂“A = Γ̂A.

For example, if A = {ab, bb, bac} then L(A) = “A = {a1b2, b1b2, b1a2c3}. The ordinary generating
function of A is 2z2 + z3, and we have EGF(A)(z) = 2 z

2

2! + z3

3! = EGF(“A)(z).

5.2 Operators and samplers of labelled classes
This section presents the transfer of combinatorial operators by the function L, and the resulting exponen-
tial Boltzmann samplers. These results are summarized in the following table.

Language C Labelled class “C EGF “C(z) Exponential sampler Γ̂“C
A+ B “A+ B̂ Â(z) + “B(z) Γ̂

Ä“A+ B̂
ä

A× B “A� B̂ |A0|“B(z) +
∫ z
0
Â(1)(z − t)“B(t) dt see Algorithm 4

A� B “A ? B̂ Â(z)× “B(z) Γ̂
Ä“A ? B̂ä

Biased Boltzmann samplers and generation of extended linear languages with shuffle 137

Lemma 5.3 Let A and B be two languages. Then ÷A+ B = “A + B̂, and EGF(÷A+ B) = EGF(“A) +

EGF(B̂).

From this lemma, we can deduce that an exponential Boltzmann sampler Γ̂
Ä÷A+ B

ä
is simply an expo-

nential Boltzmann sampler Γ̂
Ä“A+ B̂

ä
, which is well-known: it consists of a Bernoulli trial depending on

the values of the generating functions, and then it performs either a call to Γ̂“A or to Γ̂B̂.

Lemma 5.4 LetA and B be two languages. Then ÷A� B = “A? B̂ (where ? is the labelled product of two
labelled classes), and EGF(÷A� B) = EGF(“A)× EGF(B̂).

From this lemma, we can deduce that an exponential Boltzmann sampler Γ̂
Ä÷A� Bä is simply an expo-

nential Boltzmann sampler Γ̂
Ä“A ? B̂ä, which is well-known: it is just two independant recursive calls to

Γ̂“A and Γ̂B̂.
Product of labelled classes To define the translation of the product, we need to introduce a new opera-
tor: the ordered product (or ordinal product) on labelled structures — more precisely on linear species as
explained in [BLL98]. We define it here just with a clear example; and a formal and more general defini-
tion can be found in [BLL98]. The ordered product of two (labelled) words is defined comprehensively as
follows: if “A = {a1b2, b1b2a3} and B̂ = {c1d2}, then “A�B̂ = {a1b2c3d4, b1b2a3c4d5}: we concatenate
the words of the two classes, and shift the labels of the second part.

Lemma 5.5 Let A and B be two languages. Then ÷A× B = “A � B̂ (where � is the ordered product of
two labelled classes), and

EGF
Ä“A� B̂ä (z) = |A0|“B(z) +

∫ z

0

Â′(z − t)“B(t) dt

From this generating function we can deduce a Boltzmann sampler for the ordered product: the sum
leads to a Bernoulli sampling with one outcome leading to a zero-sized A object and a generic B object;
the second case corresponds to a convolution product of series, which is out of the scope of the original
Boltzmann framework. To create a Boltzmann sampler for this, one can draw a random real value t
between 0 and the parameter x following a well-chosen distribution; then call independently the sampler
for “A′ with parameter x− t and the sampler for B̂ with parameter t (see Algorithm 4).
Derivative of labelled classes We saw in the previous sections that in order to devise an exponential
Boltzmann sampler for the ordered product, we need to deal with derivatives of classes. The derivation
operation on exponential-like generating functions can be seen combinatorily as the derivation on species
(see [BLL98]). More simply, in our context, we can view a word in“A(k) as a word inAwith an increasing
labelling starting from the (k + 1)-th position. With our previous example, if A = {ab, bb, bac}, we
have “A = {a1b2, b1b2, b1a2c3}, “A(1) = {ab1, bb1, ba1c2}, “A(2) = {ab, bb, bac1} and “A(3) = {bac}.
Their EGF is EGF

Ä“Aä (z) = 2 z
2

2 + z3

6 , EGF
Ä“A(1)

ä
(z) = 2z + z2

2 , EGF
Ä“A(2)

ä
(z) = 2 + z and

EGF
Ä“A(3)

ä
(z) = 1. As usual with labelled classes, the actual size of an object is the number of labels

it holds (and not its number of letters).

138 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

6 Complexity and implementation issues
The complexity of sampling is linear in the size of the output; and it also stays linear for an aimed size,
provided that a small tolerance is allowed, as in the classical case [DFLS04].

Theorem 6.1 For any C ∈ V there is a Boltzmann generator ΓC(x) with complexity that is linear in the
size of the generated string. Moreover, ΓC(x) can be implemented in terms of O(s2) samplers, where s is
the number of languages appearing in the specification of C.

This theorem ensures a linear complexity, given that it takes a constant number of operations for both
evaluating any generating function, and drawing a random variable according to various distributions.
Regarding the evaluation of the generating functions, we can partly use an oracle [PSS08]. Still, since all
considered generating functions are rational functions, we can do better, by devising an ad-hoc evaluation
process relying on some computations of resultants (see Section 6.2). The issue of drawing random
variables according to the discrete and continuous probability distributions that are needed, is discussed
in the next subsection.

6.1 Drawing continuous and discrete random variables
The main idea of the algorithms presented in this paper is to change the value of the parameter according
to a probability distribution depending on the specification of the objects. The major problem which
needs to be addressed is a way of drawing the various random variables according to nonstandard density
functions. For example, if we are interested in the shuffle of two languages, then we need to be able to
draw the random variable DCk,x following the probability law given in Subsection 4.4. Extensively, when
dealing with extended linear languages with shuffle, three types of drawings are needed:

• Bernoulli choice with a given parameter (in Algorithms 6 and 4);

• discrete random variables with a finite support, and a given probability for each possibility (in
Algorithms 7 and 9);

• continuous distributions (in Algorithms 2 and 7).

The first item is easy to perform; for the second item, we simply compute the finite number of proba-
bilities over the whole (discrete and finite) support for the variable, and choose the value following these
proportions; the third item is more tricky, as it involves continuous distributions, however both distribu-
tions are increasing over their domain (respectively [0,+∞) and [0, x] for Algorithms 2 and 7). Maple
knowns how to draw random variable from such distributions (unimodal, or strictly monotone, over a
compact domain). For example, a simple rejection scheme works quite well; or a tuned algorithm based
on numerical inversion, or based on the ziggurat method – which both have been long-studied and op-
timized in this case (see for example [Dev86]) – could be used if necessary. To sum up, as our random
variables are fortunately either discrete and with finite support, or with a non-implicit probability function,
Maple is able to draw automatically according to these given distributions (but we could devise our own
specialized versions of these classical algorithms to gain some performances).

However, note that in the general case presented in Section 2, the distribution are arbitrary. In many
real-life case, a sampler can be derived using those from [Dev86]. But Theorem 6.1 does not not hold
anymore, the complexity is no longer linear.

Biased Boltzmann samplers and generation of extended linear languages with shuffle 139

6.2 Efficient computations of generating functions
The second issue when dealing with an actual implementation is the computations of the generating func-
tions of the involed languages. Indeed, for the operators +, × and Seq, the symbolic method (see [FS08])
gives a direct translation in terms of ordinary generating functions. But such a translation is missing for
the shuffle.

A first idea is to compute first the product of exponential generating functions “C(z) = Â(z)×“B(z) and
then compute a Borel-Laplace transform to eventually get the function C(z). However, this path leads
to a lot of symbolic computations (including a massive utilisation of differentiations, convolutions and
integrations) back and forth the worlds of ordinary and exponential generating functions.

The good idea comes from the fact that for all languages we are dealing with, the ordinary generating
function is rational. All of our operators keep this property: in particular the shuffle, if C = A � B,
and if A(z) and B(z) are rational functions of z, so will be C(z). Using this property, we devised (with
the help and insights of Bruno Salvy) an efficient algorithm using only computations of resultants and
quotients over polynomials in Q[X], based on Algorithm 10 for partial fractions. Using this algorithm,
we no longer need to perform heavy symbolic integrations in order to get the ordinary generating function
for the shuffle product.

Algorithm 10 Computation of the ordinary generating function for the shuffle product C = A� B
Input: Two rational ordinary generating functions A(z) and B(z) for A and B, given as partial fractions
Output: The rational generating function C(z) for C = A� B

Let A(z) = NA(z)
DA(z) and B(z) = NB(z)

DB(z) , where NX and DX ∈ Z[X] are the numerator and the denomi-
nator of X ∈ {A,B}
d← degree(NA) · degree(NB)
PA(X)← Xdegree(DA)DA

(
1
X

)
PB(X)(z)← (z −X)

degree(DB)
DB

Ä
1

z−X

ä
R(z)← resultantX (PA(X), PB(X)(z))
D(z)← zdegree(R)R

(
1
z

)
N(z)←

Ä∑d
n=0 cnz

n
ä
D(z) mod zd

return C(z) = N(z)
D(z)

7 Conclusion
The main purpose of this paper is to show how to transform the size distribution of the output of a Boltz-
mann sampler by modifying its parameter according to a well-chosen density (without any bias on a given
size, so that uniformity is preserved). From a combinatorial point of view, this can be seen as a general
method for transforming a Boltzmann generator for structures with a given distribution of sizes, into a
Boltzmann generator for the same combinatorial objects, with a different distribution of sizes.

As an application of this method, we present a linear time algorithm for the random generation of a class
of languages defined by linear recursive specifications involving the union, product and shuffle operators.
This class strictly contains the class of linear languages, and shares with the class of regular languages
the properties of being closed under shuffle and having a rational generating function. Moreover, the

140 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michèle Soria

sampling algorithms can be adapted to any language that can be specified with the same set of operators
and whose ordinary generating function is a rational function.

Acknowledgments
The authors are grateful to the referees for their perceptive and encouraging comments.

References
[BG12] O. Bernardi and O. Giménez. A linear algorithm for the random sampling from regular languages.

Algorithmica, 62:130–145, 2012. 10.1007/s00453-010-9446-5.

[BLL98] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures. Cambridge
University Press, 1998.

[BRS10] Olivier Bodini, Olivier Roussel, and Michele Soria. Boltzmann samplers for first-order differential spec-
ifications. Special issue of Discrete Applied Mathematics – LAGOS 09, 2010. 15 pages.

[Den94] A. Denise. Méthodes de génération aléatoire d’objets combinatoires de grande taille et problèmes
d’énumération. PhD thesis, Université Bordeaux I, 1994.

[Dev86] L. Devroye. Non-uniform random variate generation, volume 4. Springer-Verlag New York, 1986.

[DFLS04] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers for the random generation of
combinatorial structures. Combinatorics, Probability and Computing, 13(4-5):577–625, 2004.

[DGG+06] A. Denise, M.C. Gaudel, S.D. Gouraud, R. Lassaigne, and S. Peyronnet. Uniform random sampling of
traces in very large models. In Proceedings of the 1st international workshop on Random testing, pages
10–19. ACM, 2006.

[DPRS10] A. Darrasse, K. Panagiotou, O. Roussel, and M. Soria. Boltzmann generation for regular languages with
shuffle. In Conference GASCom 2010, Montréal, Canada, September 2010. 12 pages.

[DZ99] A. Denise and P. Zimmermann. Uniform random generation of decomposable structures using floating-
point arithmetic. Theoretical Computer Science, 218(2):233–248, 1999.

[Eil74] S. Eilenberg. Automata, languages and machines, volume A. Academic press, 1974.

[FGT92] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon collectors, caching algorithms and
self-organizing search. Discrete Applied Mathematics, 39(3):207–229, 1992.

[FS08] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, 2008.

[FZVC94] P. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random generation of labelled combi-
natorial structures. Theoretical Computer Science, 132(1-2):1–35, 1994.

[MZ08] M. Mishna and M. Zabrocki. Analytic aspects of the shuffle product. In 25th International Symposium
on Theoretical Aspects of Computer Science (STACS 2008), volume 1, pages 561–572. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2008.

[PSS08] C. Pivoteau, B. Salvy, and M. Soria. Boltzmann oracle for combinatorial systems. In Algorithms, Trees,
Combinatorics and Probabilities, pages 475 – 488. Discrete Mathematics and Theoretical Computer
Science, 2008. Proceedings of the Fifth Colloquium on Mathematics and Computer Science. Blaubeuren,
Germany. September 22-26, 2008.

[RS09] O. Roussel and M. Soria. Boltzmann sampling of ordered structures. Electronic Notes in Discrete
Mathematics, 35:305–310, 2009. LAGOS’09 - V Latin-American Algorithms, Graphs and Optimization
Symposium.

	Introduction
	Boltzmann generation with a biased parameter
	Boltzmann samplers
	Biasing with a stochastic value
	Biasing a pointed Boltzmann sampler into a non pointed Boltzmann sampler
	Biasing an exponential Boltzmann sampler into an ordinary Boltzmann sampler
	Other transformations: box-product and ordered-product

	Samplers for extended linear languages with shuffle
	The shuffle product
	Extended linear languages
	Boltzmann sampling

	Construction of exponential Boltzmann samplers of order k
	Disjoint union
	Product
	Sequence
	Shuffle

	Combinatorial interpretation
	Canonically labelled classes
	Operators and samplers of labelled classes

	Complexity and implementation issues
	Drawing continuous and discrete random variables
	Efficient computations of generating functions

	Conclusion

