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Mean field analysis for inhomogeneous bike
sharing systems
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In the paper, bike sharing systems with stations having a finite capacity are studied as large stochastic networks. The
inhomogeneity is modeled by clusters. We use a mean field limit to derive the limiting stationary distribution of the
number of bikes at the stations. This approach is an alternative to analytical methods. It can be used even if a closed
form expression for the stationary distribution is out of reach as illustrated on a variant. Both models are compared.
A practical conclusion is that avoiding empty or full stations does not improve overall performance.
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1 Introduction
Motivation. Bike sharing systems have generated research interest recently as such programs have been
launched in many cities around the world. The concept is quite simple: the user takes a bike to a station,
uses it and returns it at a station of his choice.

Despite their success, it is commonly observed that they do not behave very well. Users have to address
the lack of resources, finding an empty station when in need of a bike, or a full station when returning
a bike. The intuition is that the system is highly inhomogeneous, with very different arrival rates and
destinations, between housing and working areas for instance, or up-hill and down-hill stations. These
parameters may also vary with the time of day (see Borgnat et al.[1]), but this issue is not considered here.

In the literature on this topic, few analytical models have been proposed, especially stochastic models,
mainly because this leads to complex models that are difficult to analyze. Nevertheless, such mathematical
models could give an insight on the behavior of the system or study different incentive algorithms for
taking or returning bikes, designed to improve overall performance.

Goal. The paper deals with a stochastic model taking into account the finite number of bike posts at the
stations. To our knowledge, it is the first attempt to analyze the problem of returning the bikes. Our aim
is to study the impact of system inhomogeneity. We use an asymptotic approach, studying a system in
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which the number of stations and the fleet get large together. The proportion of bikes per station and the
number of spots per station, which are two key parameters of the system, remain fixed. This asymptotic
study is quite adequate for bike sharing systems, that have hundreds or thousands of stations.

Main result. The main result is the derivation of the limiting stationary distribution of the number
of bikes in the stations as the system gets large. The proof is based on mean field analysis. It amounts
to considering the empirical measure process. In the special case of homogeneous model, it is simply
the process Y (t) = (Y0(t) . . . YK(t)) where Yi(t) is the proportion of stations with i bikes at time t. It
converges when the system gets large to a deterministic dynamical system, solution of an ODE. Using a
Lyapunov function for the ODE, we show that it has a unique attractor. This yields the convergence of the
stationary distribution to this equilibrium point. Notice that it is often difficult to exhibit such a function.

The challenge is to deal with inhomogeneity of the system. Heterogeneity is modeled by clusters, which
means in network terminology, subsets of stations with the same parameters. It makes the analysis of the
system of differential equations difficult. While other works use numerical simulations of the system
[6], we obtain analytically the limiting stationary distribution, by characterizing the equilibrium point and
providing a Lyapunov function. Despite the cluster structure, our method uses a compact way to write the
differential equation.

Mean field limit is an indirect way to obtain the limiting stationary distribution: from a system of fixed
size, we take the limit as the size gets large, then the limit as time tends to infinity, identify the limits,
and of course prove convergences. In our model, say I, the stationary distribution for a fixed size has a
closed form expression. A more direct approach would be to obtain an asymptotic from this expression by
an analytical method. The benefit of mean field analysis is that it works for models where the stationary
probability measure is out of reach. As an example, we study an model where users take bikes from
nonempty stations and return them directely to non-saturated stations. For this new model, say model II,
the same results are only partially proved. However its homogeneous version is completely understood.

Impact on performance. These results allow us to study the performance of large bike sharing sys-
tems. The limiting probability that a station is empty or full is taken as the performance measure. In
the homogeneous case, the optimal proportion of bikes per station is slightly more than half the capacity
of a station. Moreover performance is very close for both models I and II for a large range of values
around this optimum. When the system is inhomogeneous, there is a proportion of bikes per station s,
depending on each cluster, which minimizes the ratio of problematic (i.e. empty or full) stations inside
a cluster. However, even if, for a given proportion s, performance is not bad in one cluster, the ratio of
problematic stations in the other clusters can be very high, and overall performance is then very poor. The
main conclusion of the study is that performance collapses due to heterogeneity.

Related work. As noted above, studies of such systems are rare. Bike sharing systems can be model-
led as closed stochastic networks since the fleet is constant. If the capacity of stations is infinite, they
are simply closed Jackson networks where the nodes are a mixture of one-server queues for the stations
and infinite-server queues for the routes. The work by Malyshev and Yakovlev [9] on closed Jackson
networks with one-server queues can be extended in this case. The limiting behavior of the network,
namely condensation in some stations while the others exhibit a queue length with geometric distribution,
can be similarly obtained. The technical arguments developed in [9] are analytical: from the product form
of the stationary invariant measure for fixed size, a saddle point method is used (see [4] for an introduction)
to obtain the asymptotic of the partition function. Note that George and Xia [7], in the context of bike-
sharing systems, provide a simpler proof in a more elementary framework: a case where the number of
stations is fixed while the total fleet becomes large.
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Mean field limits are applied to study a large class of models in statistical physics or applied probability.
It has been also introduced in analysis of algorithms (see e.g. [10, 11]). An issue raised in [12] (see also
[3]) is to give an interpretation of Lyapunov functions related to relative entropy in some communication
networks. It is pointed out in [12] that the special feature of the model is a strong requirement for obtaining
the Lyapunov function. Our model has a similar behavior and provides new insights on that topic.

Outline of the paper. Section 2 gives model I description and the main result. Section 3 is devoted
to its proof, based on a mean field approach. Model II is described and investigated in Section 4 and
practical results about performance of both models are presented in Section 5.

2 Model I: description and main result
This section gives a description of model I and the main result. This model has reversible Markovian
dynamics which allow to obtain the invariant distribution.

We consider a bike sharing system with N stations and a fleet of M bikes. Each station i has a capacity
Ki,N . The dynamics of the system is as follows. Users arrive at the stations according to independent
Poisson processes with rate λi,N at station i. When a user arrives at a station, if there is no available
bike, then he leaves the system. Otherwise, he takes a bike and chooses station j with probability pj,N .
The travel time has an exponential distribution with parameter µN , whatever the station he comes from.
When he arrives at station j, if there are less than Kj,N bikes in this station, he returns his bike and leaves
the system. If there are Kj,N bikes (i.e. the station is full), the user chooses again a station say k with
probability pk,N and goes to this station. As before, it takes a time with exponential distribution with
parameter µN . He rides like this again until he can return his bike.

Even if it is still simple, this model is a first generalization of the homogeneous case where the arrival
rates do not depend on the stations and where the user returns the bike at a station chosen at random.
Although the different probabilities to go from a station to another do not appear exactly, as a routing
matrix, the popularity of a station is taken into account.

2.1 Markovian reversible dynamics

Let N be fixed and Xi,N (t) be the number of bikes at station i, 1 ≤ i ≤ N . The process (XN (t)) =
(Xi,N (t))1≤i≤N is an irreducible Markov jump process on the finite state space

SN = {x = (x1, . . . , xN ) ∈ NN , 1 ≤ xi ≤ Ki,N ,

N∑
i=1

xi ≤M}

thus it has a unique invariant probability measure πN . The process is reversible, so it is easy to obtain πN .
Let Ri,N = µNpi,N/λi,N be the utilization at station i. For x ∈ SN ,

πN (x) =
1

ZN

∏N
i=1R

xi

i,N

(M − |x|)!
(1)

where |x| =
∑N
i=1 xi and the normalizing constant is ZN =

∑
x∈SN (

∏N
i=1R

xi

i,N )/(M − |x|)!.
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2.2 Main result
It gives an asymptotic of the invariant measure πN for N and M large, with M/N tending to s > 0. Let
ri,N = Ri,N/maxiRi,N be the relative utilization at station i. The following assumption is crucial:
Assumption (W ). There exists a probability measure I on ]0, 1]× N and Λ > 0 such that, as N tends to
infinity,

1

N

N∑
i=1

δri,N ,Ki,N

(w)−→ I and NRmax,N → Λ−1

where w means the weak convergence of measures and Rmax,N = maxiRi,N .
Note that this assumption is fundamental for the convergence to the solution of the differential equations

and is related to the system topology (see for illustration the examples above).

Theorem 1 Under assumption (W ), if I has a finite support, as N and M tend to infinity with M/N
tending to some s, the number of bikes at a station with parameters r and K has a geometric distribution
νρr,K on {0, . . . ,K} with parameter ρr where ρ is the unique solution of

s = ρΛ +

∫
]0,1]×N

< νρr,K , Id > dI(r,K) (2)

where the mean of a random variable with distribution µ is denoted classically by < µ, Id >.

Theorem 1 is proved in Section 3. Let us first give two examples.

2.3 Examples
To simplify, λi,N , Ki,N , µN and Npi,N do not depend on N . It can be straightforwardly generalized.

The homogeneous case. For each i, Ki = K, λi = λ and pi,N = 1/N thus ri,N = 1. Assumption
(W ) is obvious with I = δ1,K and Λ = λ/µ. Equation (2) rewrites

s =
λ

µ
ρ+ < νρ,K , Id > . (3)

The cluster case. Assume that there are C clusters and each cluster c has Nc stations with Nc/N
which tends to αc. Each station in cluster c has the same parameters λc, Kc and pc,N = βc/N . Thus each
station in cluster c has the same utilization Rc,N with NRc,N = µβc/λc. Assumption (W ) holds with
I =

∑C
c=1 αcδrc,Kc

, with rc = Λµβc/λc where Λ = 1/maxc(µβc/λc).
Equation (2) can be rewritten

s = ρΛ +

C∑
c=1

αc < νρrc,Kc , Id > (4)

which generalizes equation (3) obtained for the homogeneous case.

3 A mean field analysis
Subsection 3.1 is devoted to the proof of Theorem 1, divided into several steps. Some connections to an
analytical method are given in 3.2.
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3.1 Mean field limit
A simplification. For fixed N , the invariant measure πN given by equation (1) depends on the different
parameters only by Ri,N . Thus, to obtain the limiting invariant measure, one can assume without loss of
generality that µN = 1 and a uniform routing pi,N = 1/N . In what follows, we assume that Ki,N = KN

to avoid cumbersome notations but it remains valid replacing r by (r,K) and proves Theorem 1.
The empirical measure process. Due to heterogeneity with respect to the N stations, the quantity of

interest is the following empirical distribution of the stations as function of time

Y N (t) =
1

N

N∑
i=1

δ(ri,N ,Xi,N (t)).

Conditionally on Y N (t) = y, there is an arrival at a station with utilization r and with n bikes, n > 0,
at rate y(r, n)/(rRmax,N ), and a return of a bike in a station with utilization r and with n bikes, n < K
at rate Ny(r, n)(M −

∑
(r′,n′) n

′y(r′, n′)). The empirical measure process (Y N (t)) is thus a Markov
process on the finite state space

YN = {y =
1

N

N∑
i=1

δ(ri,N ,ni), (ni)1≤i≤N ∈ N, ni ≤ Ki,N ,

N∑
i=1

ni ≤M},

included in Y = P(]0, 1] × N), the set of probability measures on ]0, 1] × N. The jump matrix of the
process (Y N (t)) is defined, for y ∈ YN , by

QN (y, y +
1

N
(δ(r,n−1) − δ(r,n))) =

y(r, n)

rRmax,N
1n>0

QN (y, y +
1

N
(δ(r,n+1) − δ(r,n))) = Ny(r, n)(M −

∑
(r′,n′)

n′y(r′, n′))1n<K .

Remark. The first marginal of Y N (t) is Y N1 (t) = 1
N

∑N
i=1 δri,N which is deterministic. Thus, (W ) is

necessary for the convergence of process Y N .
Convergence to the dynamical system. Under assumption (W ), as I has a finite support, by [2]

theorem 4.1, (Y N (y)) converges in distribution to a dynamical system (y(t)), unique solution of the
following differential equation

ẏ =

∫∫
]0,1]×{0,...,K}

(
Λ

r
(δ(r,n−1) − δ(r,n))1n>0 + 1n<K(δ(r,n+1) − δ(r,n))(s− < y2, Id >)

)
dy(r, n)

(5)

where < y2, Id >=
∫
ndy(r, n).

Equilibrium point for the dynamical system. If ȳ in Y is an equilibrium point for the dynamical
system, applying the right-hand side of equation (5) to A× {p}, A ⊂]0, 1], p ∈ {0, . . . ,K},

0 = (1p>0ȳ(A× {p− 1})− 1p<K ȳ(A× {p})) (s− < ȳ2, Id >)

+ 1p<K

∫∫
A×{p+1}

Λ

r
dȳ(r, n)− 1p>0

∫∫
A×{p}

Λ

r
dȳ(r, n).
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It means that, for r > 0, ȳ(r, .) is the invariant measure of a M/M/1/K queue with arrival to service
rate ratio r(s− < ȳ2, Id >)Λ−1. Thus, given r, ȳ(r, .) is a geometrical distribution on {0, . . . ,K} with
parameter rρ(ȳ) where ρ(y) is defined on Y by

ρ(y) = (s− < y2, Id >)Λ−1. (6)

Recall that the geometric distribution on {0, . . . ,K} with parameter a is denoted by νa,K . One gets
that, for the equilibrium point ȳ,

< ȳ2, Id >=

∫
< νrρ(ȳ),K , Id >)dI(r)

which, plugging it in equation (6), gives

ρ(ȳ) = (s−
∫
< νrρ(ȳ),K , Id >)dI(r))Λ−1.

Thus, to prove the existence and uniqueness of ȳ, it is sufficient that the following equation

s = Λρ+

∫
< νrρ,K , Id > dI(r)

which is equation (2), has a unique root ρ > 0. It is straightforward as the right-hand side of this equation
is an increasing function of ρ on R+

∗ , from 0 to +∞.
Limiting invariant measure. The purpose then is to prove that this equilibrium point is the concen-

tration point as N tends to infinity of the invariant measure of process Y N . A Lyapunov function g
of the dynamical system (y(t)) is a function which decreases along its trajectories, more precisely, for
each t ≥ 0, d

dtg(y(t)) ≤ 0 with equality only if y is the unique equilibrium point of (y(t)). Finding
a Lyapunov function is a way to prove that the equilibrium point is the concentration point of the in-
variant measure of process Y N (see details for example in [12]). The following proposition provides a
Lyapunov function. Let us recall some definition. For µ and µ′ probability measures on {0, . . . ,K},
H(µ/µ′) =

∑K
n=0 µn log(µn/µ

′
n) is the relative entropy of µ with respect to µ′.

Theorem 2 Function g defined on Y by g(y) = h(y)− S(ρ(y)), where ρ(y) is defined by equation (6),

S(u) = uΛ− s log u+

∫
]0,1]×N

log
1− (ur)K+1

1− ur
dI(r,K), (7)

h(y) =

∫
]0,1]×N

H(y(r,K, .)/νrρ(y),K)dI(r,K),

and νa,K is defined in Theorem 1, is a Lyapunov function for the dynamical system (y(t)).

Sketch of the proof. The main argument is the decreasing of the relative entropy along the trajectories of a
Markov process. Here, the dynamical process can be interpreted as a Markov process but with transitions
depending on time. This adds a supplementary term, deriving the relative entropy, which is the second
term of the expression of g.

Remark. Theorem 1 could be extended when I has no more a finite support. The previous approach
would work, with further technical arguments for proving the convergence to the dynamical system, and
also that g is a Lyapunov function.



Mean field analysis for inhomogeneous bike sharing systems 371

3.2 The asymptotic of the partition function
As the invariant measure has an explicit form, an analytical method can be considered. It consists in a
saddle point method to obtain the asymptotic for ZN when N gets large with M/N which tends to s. If
the capacity of the stations is infinite, the asymptotic was given in the paper by Kogan [8] , mentioned
also in [9, Section 6] where a result similar to Theorem 1 appears.

Let ZN be indexed also by M . Substituting equation for ZM,N ,

+∞∑
M=0

zMZM,N = ez
N∏
i=1

1− (zRi,N )Ki+1

1− zRi,N
, |z| < 1. (8)

If ΘN (u) =
∑+∞
M=0(u/Rmax,N )MZM,N then

ΘN (u) = eu/Rmax,N

N∏
i=1

1− (uri,N )Ki+1

1− uri,N

which can be rewritten ΘN (u)/uM = eNSN (u), where

SN (u) =
u

NRmax,N
− M

N
log u− 1

N

N∑
i=1

log
1− (uri,N )Ki+1

1− uri,N
.

By assumption (W ), SN (u) converges to S(u) given by equation (7). By derivation and some algebra,

S′(u) = Λ− s

u
+

∫
]0,1]×N

(
r

1− ur
− (K + 1)r(ur)K

1− (ur)K+1

)
dI(r,K)

= Λ− s

u
+

1

u

∫
]0,1]×N

< νur,K , Id > dI(r,K).

Thus, S′(u) = 0 if and only if u is a root of equation (2). A saddle point method will give that, as
N → +∞ and M/N → s,

1/N · log(ZM,N/Rmax,N ) ∼ S(ρ).

It is worth noting the presence of S both in the partition function asymptotic and the Lyapunov function.

4 Model II
In this section, a second model is proposed. In model II, the total arrival process to the system is exactly the
same as in Model I: a Poisson process with rate

∑N
i=1 λi,N , but users arrive only at non-empty stations,

with a rate at a non empty station i proportional to λi,N . Thus he always find a bike and takes it for
an exponential time with parameter µN , then returns it at a non saturated station j, with probability
proportional to pj,N . This variant takes into account the case where the users have information about the

problematic stations and avoid them. Let p̃j,N
def
= Npj,N .

In model II, the Markovian dynamics are no more reversible. Moreover, the invariant distribution is
out of reach and does not in general depend only on the utilization of the stations. But a result, similar to
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Theorem 1, is only partially obtained for model II. The idea is , to introduce in the empirical measure a
deterministic coordinate more general than the utilization, to obtain the behavior of the system as it gets
large by a mean field approach. We prove the following proposition.

Theorem 3 Assume that it exists I probability measure on R3 × N such that

(W )
1

N

N∑
i=1

δ(λi,N ,Npi,N ,µN ,Ki,N ) → I.

If I has a finite support, as N and M tend to infinity with M/N tending to some s, the empirical measure
process converges to a dynamical process. There exists an equilibrium point ȳ and for x = (λ, p̃, µ,K),
ȳ(x, .) has a geometric distribution with parameter rρ, where r = pµ/λ and ρ is a root of

s =

∫
< νrρ,K , Id > dI(x) + ρ

∫
λ(1− νrρ,K(K))dI(x)∫
λ(1− νrρ,K(0))dI(x)

. (9)

In the homogeneous case, the equilibrium point is unique and is the concentration point of the sequence
of the invariant measures of the number of bikes at a station.

Remark. The uniqueness of the equilibrium point and the concentration of the invariant measures are
conjectured for the cluster case (i.e. when I has a finite support).

Proof: Non reversible dynamics. The empirical measure process (Y N (t)) to consider is defined by

Y N (t) =
1

N

N∑
i=1

δ(xi,N ,Xi,N (t))

where xi,N = (λi,N , Npi,N , µN ,Ki,N ) is called the parameter of station i.
It is also a Markov process, on a finite state space YN included in Y = P(R3 × N). From y ∈ YN ,

a first transition to y + (δ(x,n−1) − δ(x,n))/N is an arrival at a station with parameter x and with n
bikes, n > 0. It occurs at rate Nλy(x, n)1n>0/

∑
(x′,n′) λ

′y(x′, n′)1n′>0. A second transition from y to
y + (δ(x,n+1) − δ(x,n))/N is a return of a bike in a station with parameter x and with n bikes, n < K, at
rate µ(S −

∑
(x′,n′) n

′y(x′, n′))p̃y(x, n)1n<K/
∑

(x′,n′) p̃
′y(x′, n′)1n′<K .

Under assumption (W ), for I with finite support, standard arguments give that the empirical measure
process converges to the unique solution of

ẏ =

∫
(δ(x,n−1) − δ(x,n))

λ1n>0∫
(x′,n′)

λ′1n′>0dy(x′, n′)
+

(δ(x,n+1) − δ(x,n))
p̃µ1n<K∫

(x′,n′)
p̃′1n′<Kdy(x′, n′)

(s− < y2(t), Id >)dy(x, n). (10)

Equilibrium point. Let ȳ be an equilibrium point of the dynamical system given by equation (10).
As in Section 3.1, it can be proved that, for x = (λ, p̃, µ,K), ȳ(x, .) has a geometric distribution with
parameter rρ, where r = pµ/λ and ρ is a root of equation (9). Thus, using the closed-form expressions
for νa,K(0) and νa,K(K), ρ satisfies:

s =

∫
< νrρ,K , Id > dI(r) +

(∫
λ

1− (rρ)K

1− (rρ)K+1
I(dx)

)
/

(∫
λr

1− (rρ)K

1− (rρ)K+1
I(dx)

)
. (11)
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For the homogeneous case, it is then straightforward that equation (11) has a unique root ρ because, in
this case, its right-hand side has a second term which reduces to a constant, 1/r, thus is increasing from 0
to K when ρ goes from 0 to +∞. It is conjectured in the cluster case.

Limiting invariant measure. For the homogeneous model, we refer to [5] for details. The key argu-
ment is that < ȳ, Id >= s− λ/µ is constant, which is no more valid even in the cluster case. 2

5 Performance
Performance of the system is given by the stationary probability that a station is problematic, i.e. has no
bikes, which means the loss of arriving users, or saturated, i.e. with no lockers available, so users cannot
return their bike. For model I, by Theorem 1, when the system gets large, if the station has relative
utilization r and capacity K, this probability tends to ȳ(r,K, 0) + ȳ(r,K,K). Recall that ȳ(r,K, .) =
νρr,K where ρ is the root of equation (2). Model II is also detailed.

5.1 Model I in the one cluster case

Proposition 1 Consider model I in the one cluster case.
(i) The limiting proportion of problematic stations as a function of s is given by the parametric curve

ρ 7→(s(ρ), νρ,K(0) + νρ,K(K)) =

(
λ

µ
ρ+ < νρ,K , Id >,

1− ρ
1− ρK+1

(1 + ρK)

)
.

(ii) It is minimal when s = K/2 + λ/µ and the minimum is equal to 2/(K + 1).
(iii) As K grows, the performance around s = K/2 + λ/µ becomes flatter and insensitive to λ/µ.

Proof: Assertion (i) is a simple consequence of Theorem 1. For assertion (ii), the intuitive argument is
that the behavior of this geometric distribution νρ,K for the number of bikes per station depends on the
position of ρ with respect to 1: more concentrated on small values if ρ is less than one, on large values,
up to K, if ρ is greater than one. Indeed, it can be proved that

ϕ(ρ) = νρ,K(0) + νρ,K(K)

has a minimum at 1 which is 2/(K + 1). And thus s(1) = K/2 + λ/µ is the optimal proportion of bikes
per station. For (iii), it can be proved that, for ψ = ϕ ◦ s−1,

ψ′′(s(1)) =
K(K − 1)

3(K + 1)(λ/µ+K2/12 +K/6)2
≤ 48

K(K + 2)2
.

It gives that the performance curve can never be sharp at the optimal value, for the range of values con-
sidered here, i.e. K ≥ 20. 2

In practical situations, a system with 30 lockers per station would lead to a proportion of problematic
stations of at least 2/31 ≈ 6.5%.
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5.2 Model I in the cluster case
When we have multiple clusters, the proportion of problematic stations in a cluster c can be expressed as
a function of ρ and is equal to

νρrc,Kc
(0) + νρrc,Kc

(Kc) =
1− ρrc

1− (ρrc)Kc+1
(1 + (ρrc)

Kc).

The study of the one cluster case gives that this quantity has a minimum 2/(Kc+1) for ρrc equal to 1 and,
in this case, the proportion of problematic stations in cluster c′ is exactly νrc′/rc,Kc′

(0)+νrc′/rc,Kc′
(Kc′).

As for the one cluster case, the proportion of problematic stations as a function of s can be plotted using
the parametric curve given by, for ρ > 0,

ρ 7→

(
Λρ+

C∑
c=1

αc < νρrc,Kc , Id >,

C∑
c=1

αc
1− ρrc

1− (ρrc)Kc+1
(1 + (ρrc)

Kc)

)
. (12)

5.3 Model II
When studying the equilibrium point of the system, the only difference with model I studied in Sections
2 and 3 is that ρ is given by equation (11), conjectured to have a unique solution. Therefore, we can plot
easily the performance of the system by a parametric curve similar to (12) but where s(ρ) in (12) is given
by equation (11). For the one cluster case, it means simply to replace λ/µρ by λ/µ in s(ρ) and, moreover,
when s 6∈ [λ/µ,K + λ/µ], the proportion of problematic stations is one.

It shows that the proportion of problematic stations has a similar shape for both models. Indeed, as
before, the minimal proportion is 2/(K + 1) and is obtained for s = K/2 + λ/µ. When s is not equal to
K/2 + λ/µ, this proportion will be higher than in model I.

This shows that although forcing people to go to a non-saturated or non-empty station reduces the
unhappy users since everyone can take or leave a bike at anytime, it makes the system more congested
and does not improve overall performance. A user that is not aware of the state of the system will have
more problems in this system than in the first one.

5.4 An example.
This is illustrated for a two cluster case where the performance for both models is compared. The two
clusters have the same size N/2, the travel times have the same exponential distribution with parameter
1, the probability to join each station p1,N = p2,N = 1/N and the number of slots K1 = K2 = 30 is the
same but the arrival rates are λ1 = 1.3, respectively 2, while λ2 = 1. Figure 1 is obtained by plotting
functions given by equation (12) and similar equations for each cluster, and for model II. In Figure 2, the
proportion of empty and full stations is detailed. For example, it can be seen, from Figure 2, that even
when the system is close to symmetry (λ1/λ2 = 1.3), if the number of bikes is optimal, near 13, a user
going from an underloaded to an overloaded station has more than 25% chance of not finding a bike and
more than 10% of finding a saturated station. This example shows that even slight asymmetry implies
poor system performance.

6 Conclusion and future work
By extending the mean field methods for a model with clusters, we obtained performance of an inhomo-
geneous bike sharing system. Our argument would apply to other large networks. To make the model
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(a) λ1/λ2 = 1.3 (b) λ1/λ2 = 2

Fig. 1: Performance of the system as a function of the number of bikes in the city with two areas that have different
arrival rates for model I (solid) and model II (dash).

analytically tractable, the way to return the bike then is simplified and we do not take into account geom-
etry. For example, in a real system, a user finding a saturated station would search for an available spot
in a local neighborhood. Our simulations on more realistic models, not presented here, suggest that the
performance is very close. Future work would include evaluation of the influence of geometry.

Moreover, due to intrinsically poor performance, there is actually a pressing need to find efficient algo-
rithms based on incentives to the users or relying on redistribution of bikes by trucks. This question has
been investigated in [5] for an homogeneous system. Designing algorithms for inhomogeneous systems
and studying then the system behavior is a challenging problem.
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