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New light on Bergman complexes by decomposing
matroid types

Martin Dlugosch
Institute of Algebra, Geometry and Topology, University of Bremen, Germany

Abstract. Bergman complexes are polyhedral complexes associated to matroids. Faces of these complexes are certain
matroids, called matroid types, too. In order to understand the structure of these faces we decompose matroid types
into direct summands. Ardila/Klivans proved that the Bergman Complex of a matroid can be subdivided into the order
complex of the proper part of its lattice of flats. Beyond that Feichtner/Sturmfels showed that the Bergman complex
can even be subdivided to the even coarser nested set complex. We will give a much shorter and more general proof of
this fact. Generalizing formulas proposed by Ardila/Klivans and Feichtner/Sturmfels for special cases, we present a
decomposition into direct sums working for faces of any of these complexes. Additionally we show that it is the finest
possible decomposition for faces of the Bergman complex.
Résumé. Les complexes de Bergmann sont des complexes polyhedrales affectés à des matroides. Les faces de ces
complexes sont des matroides pour leur part, on les appelle types de matroides. Pour pouvoir comprendre ces types
de matroides nous les divisons en sommes directes. Ardila et Klivans ont prouvé que le complexe de Bergman dun
matroide peut être subdivisé en le complexe dordre du propre treillis des flats. Au surplus, Feichtner/Sturmfels ont
pu montrer que le complexe de Bergmann peut même être subdivisé en le nested set complexe qui est encore plus
grossier. Nous y présenterons une preuve plus courte et plus générale. Nous généraliserons des formules qui ont déjà
été rédigées pour des cas spéciaux par Ardila/Klivans. Ainsi, nous révélerons une division des types de matroides
en sommes directes qui est valable tous les complexes évoqués. De plus, nous montrerons que cette division est la
division la plus fine pour les faces du complexe de Bergmann.
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1 Introduction
This is a extended abstract of the paper [Dlu11], which is based on my diploma thesis. For proofs I refer
to it.

Let V be a r-dimensional subspace of the n-dimensional vector space Cn. The set of vectors

(log |v1|, . . . , log |vn|) ∈ Rn,

for v1, . . . , vn running through all non-zero elements of V , is called the amoeba of V . The limit set of
these amoebas, for bases of the logarithm approaching zero, is a polyhedral fan called the Bergman fan
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of V . It first appeared in the original paper of Bergman [Ber71] as logarithmic limit set of V . The study of
these spaces is stated as tropical geometry.

Matroid theory comes in when assigning a matroid to V by setting its circuits C as the minimal sets for
which there are linear forms of the form

∑
i∈C aixi vanishing on V . For introductory references on matroid

theory see [Oxl11]. In fact the Bergman fan of V just depends on this associated matroid [Stu02]. It is the
set of all vectors ω = (ω1, . . . , ωn) ∈ Rn such that for every circuit C the minimum of the set {ωi|i ∈ C}
is attained at least twice. Although we cut our own path of defining it, from this one we can already see that
the Bergman fan is invariant under translation along R(1, . . . , 1) and positive scaling. Hence we lose no
information when restricting to the sphere S = {ω ∈ Rn :

∑n
i=1 ωi = 0 ,

∑n
i=1 ω

2
i = 1}. This restriction

is a polyhedral complex called Bergman complex.
Section 2 is devoted to the gathering of current knowledge about matroid polytopes and Bergman fans.

Most of it is found in [FS05] and [AK05]. Afterwards we take a look at the concept of nested set complexes
by Feichtner and Kozlov [FK04] in Section 3.

The original result of Ardila and Klivans [AK05] is that the Bergman complex of a matroid M can be
subdivided to a realisation of the order complex of the proper part of the lattice of flats of M . The latter
complex is well known [Whi92]. This result was sharpened by Feichtner and Sturmfels [FS05] by the fact
that Bergman complexes can even be subdivided to realizations of the even coarser nested set complexes of
their respective lattices of flats. Comparing faces of all these complexes by focusing on their vertices, we
give a new, much shorter proof of the latter result in Section 4.

Both Ardila/Klivans [AK05, Prop. 2] and Feichtner/Sturmfels [FS05, Thm. 4.4] gave formulas for
the supporting matroid types of faces of the order complex respectively the nested set complex in terms
of a decomposition into direct sums. In Section 5 we generalize both these formulas giving such a
decomposition that even works for faces of the Bergman complex. Taking a closer look we prove that the
decomposition for faces of the Bergman complex is the finest one can get i.e. summands are connected.

2 Matroid polytopes, the Bergman complex and nested sets
We start with a geometric approach to matroids due to Gel’fand, Goresky, MacPhersen and Serganova
[GGMS87]. Let M be a family of subsets of size r of a ground set {a1, . . . , an}. Each subset b can be
represented by its incidence vector in Rn, i.e. the j-th coordinate is 1 iff aj ∈ b and 0 otherwise. Now we
can identify M with the convex hull of its elements as incidence vectors:

PM := conv{eb : b ∈M}.

This yields a convex polytope in Rn. Since the generating vertices all lie on the simplex

∆ :=

{
(x1, . . . , xn) ∈ Rn : 0 ≤ xi for all i,

n∑
i=1

xi = r

}
,

the dimension is limited by n− 1.

Definition 2.1 Let M be a family of r-element subsets of the ground set {a1, . . . , an}. If every edge of the
polytope PM is parallel to ei − ej for some 1 ≤ i, j ≤ n we call M a matroid. The elements of M are
called bases of the matroid. The polytope PM is the matroid polytope.
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Let M be a matroid with ground set E(M). A subset I ⊆ E(M) is independent if I ⊆ b for a basis
b ∈ M . Hence, bases are the maximal independent sets. If not independent we call a subset of E(M)
dependent. The rank of a matroid is simply r, the cardinality of its bases. The rank of a subset of E(M) is
the cardinality of its largest independent subset. Hence, a set is independent iff its cardinality equals its
rank. With circuits we denote minimal dependent sets with respect to inclusion. A flat F of M is a subset
such that there is no circuit c of M with |c\F | = 1. Another way to look at this is that every new element
we add to F is increasing the rank. The span of a subset G is the intersection of all flats containing G. It is
the smallest flat which contains G. We can construct it, by adding all the elements of E(M)\G to G which
do not increase the rank of G. The collection of flats of M can be ordered by inclusion. The resulting poset
is a lattice by setting F1 ∧ F2 := F1 ∩ F2 and F1 ∨ F2 := span(F1 ∪ F2). We call it the geometric lattice
LM of the matroid M . A matroid M is called loopless if

⋃
M =

⋃
b∈M

b = E(M).

Let F and G be flats of M such that F is contained in G. We create a new matroid on the ground set
G\F by setting:

M [F,G] := {b ∩ (G\F ) : b ∈M, |b ∩ F | = rank(F ), |b ∩G| = rank(G)}.

The geometric lattice LM [F,G] is isomorphic to the interval [F,G] in LM .
There are two special cases of this we want to bring up. The first is F = 0̂. We will call M [0̂, G] the

restriction of M to G. Notice that the rank of the matroid M [∅, G] equals rank(G). The other special case
is called contraction and describes the case of G = 1̂ = E(M). Note that M [F,E(M)] is loopless iff F is
a flat of M .

There is an equivalence relation on the ground set of a matroid defined as follows: Two elements x and
y are equivalent if x = y or there is a circuit of M which contains both x and y. The proof that this is an
equivalence relation is given in [Oxl11, 124-125], like many other helpful statements for matroids. Note
that connected matroids are loopless for ground sets of cardinality of at least 2. The equivalence classes are
the connected components of M . Let c(M) denote the number of connected components of M . We say a
matroid is connected iff c(M) ≤ 1. The case of c(M) = 0 belongs solely to the empty matroid which is
the matroid with empty ground set.

We say a flat F of M is connected if its restriction M [0̂, F ] is connected. Dual to this, it is called
co-connected if its contraction M [F, 1̂] is connected.

Proposition 2.2 The dimension of the matroid polytope PM is n− c(M).

From here on we are focusing on connected matroids. Every non-connected matroid can be decomposed
into a direct sum of connected matroids. Then the matroid polytope of the original matroid is just the
product of the matroid polytopes of the direct summands.

Our goal now is to describe the matroid polytope by a system of linear (in-)equalities.

Proposition 2.3 For a connected matroid M of rank r the matroid polytope has the form:

PM =

{
(x1, . . . , xn) ∈ ∆ :

∑
i∈F

xi ≤ rank(F ) for all flats F of M

}
.

Proof: It is enough to consider the facets of PM , since they are bounding the polytope. Let us assume
a facet defining inequality is

∑n
i=1 aixi ≤ c, where n is the cardinality of E(M). What we know from
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the definition of matroids is that all the edges are parallel to vectors ei − ej . We can compute the normal
vector of the facet by looking at the edges it has to be perpendicular to. The constraints the edges impose
are all of the form ai = aj . Since the normal vector is uniquely determined by these constraints up to
scalar multiples we can think of the ai to be either 0 or 1. So the inequality reduces to

∑
i∈A xi ≤ c′ for

some A ⊆ E(M) and some c′ ∈ R. But what is the maximum the linear form
∑
i∈A xi can attain? As a

linear form its maximum has to be attained at some face of PM . Pick any vertex of this face and evaluate
the linear form on it. We obtain that c′ = max {|b ∩ A| : b ∈ M} = rank(A). What is left is to show
that we just have to pick the subsets A which are flats. Let span(A) be the flat spanned by A. Of course
A ⊆ span(A) and rank(A)=rank(span(A)) hold.∑

i∈A
xi ≤

∑
i∈span(A)

xi ≤ rank(span(A)) = rank(A)

So the inequality of span(A) in the middle already implies the inequality of A. 2

A very important fact, still easy to see, is that every face of PM is a matroid polytope, too, because
its edges are still parallel to some difference of standard basis vectors. Assume that, for ω ∈ Rn, the
linear form

∑n
i=1 ωixi attains its maximum in PM at that chosen face. Notice that this linear form can

differ from the linear forms in the proposition above. It is not uniquely determined by the chosen face.
Considering this we will construct the Bergman complex soon. The bases of this face are exactly the bases
of M for which the linear form

∑n
i=1 ωixi attains its maximum. From an algorithmic point of view the

bases are exactly the possible outputs of the greedy algorithm with weight ω. The matroid Mω is called the
matroid type of the face.

Since we can represent the matroid polytope PM through a system of linear inequalities indexed by
the flats of M we want to filter which of them define facets of the matroid polytope. The question is
what combinatorial property do flats have whose linear form attains its maximum at a facet of the matroid
polytope. We will call these special flats flacets of M .

So the matroid polytope PM is bounded by the inequalities of the flacets and possibly the inequalities of
the form xi ≥ 0. Especially matroids are determined by their flacets.

Proposition 2.4 A flat F of M is a flacet iff it is connected and co-connected.

The idea of decomposing the matroid type Mω in as fine of a direct sum as possible is the aim of Section 5.
The case of MeF above is a first example of this.

Recall that the linear form
∑n
i=1 ωixi attaining its maximum at a certain face of PM is not uniquely

determined. For c ∈ R and c+ ∈ R+ the linear forms
∑n
i=1(ωi · c+)xi and

∑n
i=1(ωi + c)xi induce

the same matroid type. So we still get all the different matroid types when restricting ω to elements of
the unit (n − 2)-sphere contained in a hyperplane orthogonal to (1, . . . , 1), which is S = {ω ∈ Rn :∑n
i=1 ωi = 0,

∑n
i=1 ω

2
i = 1}. The only exception is the matroid type of ω = (0, . . . , 0) which is simply

M again. Later we will view this as the matroid type of the empty face of the Bergman complex.
Consider the following equivalence relation on S: ω ∼ ω′ iff the induced matroid types Mω and Mω′

coincide. The equivalence classes are relatively open convex polyhedral cones. These cones form a
complete fan in Rn. It is the normal fan of PM . The equivalence classes define a spherical subdivision
of S. This subdivision is isomorphic to the boundary of the polar dual P ∗M of the matroid polytope. For
simplicity of notation, we will identify the face of ∂PM just like its dual in ∂P ∗M with its matroid type Mω .
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Definition 2.5 The Bergman Fan B̃(M) is the subfan of the inner fan of PM consisting of the matroid types
which are loopless. The Bergman Complex B(M) is the intersection B̃(M) ∩ S where S = {ω ∈ Rn :∑n
i=1 ωi = 0 ,

∑n
i=1 ω

2
i = 1}.

After this geometric realisation let us reduce the Bergman complex to its combinatorial data, i.e. to its
face poset. The faces of the Bergman complex B(M) are the matroid types Mω which are loopless. Since
the matroid types are subsets of bases of M they come with the natural partial order of inclusion. The order
of the face poset of the Bergman complex is the dual of this order. So the face Mω is contained in the face
Mω′ in B(M) iff the reversed inclusion holds for Mω and Mω′ as subsets of M .

Let us consider what the vertices of the Bergman complex are. Apart from the empty face they are the
minimal faces of P ∗M i.e. the maximal faces of PM , whose matroid types are loopless. But obviously
the matroid type of a face of PM is loopless iff the face is not contained in one of the hyperplanes of
the form xi = 0. So the vertices of B(M) are duals of facets of PM whose hyperplanes are not of the
form xi = 0. We already determined what these are, namely the flacets of M . Since every face of PM is
uniquely determined by the set of facets of the polyhedral complex which contain it, every face of B(M)
is uniquely determined by its vertices.

Example 2.6 Let M be the matroid with ground set {1, 2, 3, 4, 5, 6} and circuits {1, 2, 3, 4}, {1, 2, 5, 6}
and {3, 4, 5, 6}. Hence the bases are all subsets of size four except for the circuits. There are two types of
flacets here. On the one hand there are the singletons i.e. the subsets of size one. On the other hand there
are the three circuits itself.

The Bergman complex is a pure polyhedral complex of dimension two. There are two kinds of facets of
the Bergman complex. There are twenty triangles but there are also three quadrangles, whose vertices are
shortly notated:

1, 2, 1234, 1256 3, 4, 1234, 3456 5, 6, 1256, 3456.

This shows that the Bergman complex can be non-simplicial.

3 Nested set complexes
Beside order complexes this is another way of creating a simplicial complex from a geometric lattice due
to Feichtner and Kozlov [FK04].

For a semi-meet lattice L let intervals in L be denoted by [X,Y ] := {Z ∈ L : X ≤ Z ≤ Y }. For any
X ∈ L and any subset S ⊆ L write S≤X := {Y ∈ S : Y ≤ X}. The same way we can define S<X , S≥X
and S>X . Last but not least, the set of maximal elements in S ⊆ L is denoted by maxS.

Definition 3.1 For a finite lattice L a subset G in L>0̂ is a building set if for any X ∈ L>0̂ with
maxG≤X = {G1, . . . , Gk} the map

ΦX : Πk
j=1[0̂, Gj ] −→ [0̂, X]

induced by the inclusions of the intervals [0̂, Gj ] ⊆ [0̂, X] is an isomorphism of posets.

In colorful language, the condition means that X can be decomposed into G1, . . . , Gk and the properties
of [0̂, X] can be separately investigated in the intervals [0̂, Gj ].
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There is always a maximal and a minimal building set. The maximal one is always the whole lattice
without 0̂. In this case X is decomposed into just one factor, X itself. The minimal building set Gmin
consists of all connected flats and, if L is not connected already, the top element 1̂.

Definition 3.2 Let L be a finite lattice and G a building set containing the top element 1̂. A subset S ⊆ G
is called nested if for any set of incomparable elements X1, . . . , Xk of at least two elements of S the join
X1 ∨ . . . ∨Xk does not lie in the building set G again. Since subsets of S fulfill the same condition, again
this is a simplicial complex. Topologically, it is a cone with apex {1̂}. Its link N (L,G) is the nested set
complex of L with respect to the building set G.

The case of the minimal building set Gmin is called the nested set complex N (L,Gmin). If there is no
hint about the building set, it is the minimal one. The other extreme is the maximal building set. Since
every join of incomparable elements is an element of the building set the only nested sets are those which
are totally ordered. So the simplices are just the chains in the proper part L − {0̂, 1̂}. Thus the nested set
complex with respect to the maximal building set equals the order complex of the proper part of L.

A lattice is atomic if every element is a join of atoms. Our geometric lattices are such atomic lattices.
For simple matroids these atoms are just the elements of the ground set E(M). For arbitrary atomic lattices
Feichtner and Yuzvinsky [FY04] proposed the following polyhedral realization of nested set complexes.

Let L be an atomic lattice with atoms {a1, . . . , an} and G a building set containing 1̂. For any G ∈ G let
eG ∈ Rn be the incidence vector of G respective the set of atoms i.e. the i-th coordinate is 1 iff a1 ⊆ G
and 0 otherwise. For a nested set S the set of incidence vectors of its elements is linearly independent.
Hence with R≥0{eG|G ∈ S}, they span a simplicial cone. For nested sets S and S′ they intersect exactly
in the cone belonging to the nested set S ∩ S′. Thus the set of cones from nested sets form a simplicial fan.

Just like the Bergman Fan this fan has the property that its cones are invariant under the translation
along the line R(1, . . . , 1). So again we loose no information when restricting the fan to the (n-2)-sphere
S = {ω ∈ Rn :

∑n
i=1 ωi = 0 ,

∑n
i=1 ω

2
i = 1}. The resulting spherical complex is a geometric realization

of the nested set complex.
In order to compare nested set complexes of different building sets, Feichtner and Müller [FM05] proved

that for building sets G and G ∪ {X} the nested set complex respective the building set G ∪ {x} can be
obtained by a stellar subdivision from the nested set complex of the smaller building set G at the simplex
corresponding to the factors of X respective G. Recursively we can construct the order complex of the
proper part L − {0̂, 1̂} , which is the nested set complex of the maximal building set, from the nested set
complex of the minimal building set by a sequence of stellar subdivisions. The single steps correspond
to adding elements to the building sets in a non decreasing order. In particular the order complex of the
proper part of L and the nested set complex are homeomorphic.

Example 3.3 Consider the matroid of Example 2.6. The lattice L is the lattice of flats of the matroid M .
Though this is not true in general, the minimal building set Gmin consists exactly of the set of flacets. The
complexes coincide except for the three squares which are each replaced by two triangles with vertices:

1, 2, 1234 1, 2, 1256 3, 4, 1234 3, 4, 3456 5, 6, 1256 5, 6, 3456.
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4 Comparison of order complex, nested set complex and Bergman
complex

Ardila and Klivans [AK05] first showed that the order complex of proper part of the lattice of flats is a
refinement of the Bergman complex. Feichtner and Sturmfels [FS05] proved that this is even true for the
nested set complex. Though we can gain a lot of insight from their proof it is a little bit complicated. From
another point of view this can be seen easier.

Remember the geometric realizations of the order complex (nested set complex of the maximal building
set), the nested set complex (with minimal building set) and the Bergman complex.

What faces of all these complexes have in common is that they are the spherical convex of their vertices.
The vertices are the scaled incidence vectors of flats in the case of the order complex, connected flats in the
case of the nested set complex and flacets in the case of the Bergman complex.

Theorem 4.1 For any of these complexes any element ω in the cone corresponding to some face with
vertices Γ has the form

∑
F∈Γ λF · eF for all λF  0. Then identifying the matroid type Mω with its set of

bases:
Mω = { b ∈M | for all F ∈ Γ : |b ∩ F | = rank(F )} .

Proof: A basis b of M maximizes the linear functional ω in PM iff for all bases b′ of M the inequality
eb′ · ω ≤ eb · ω holds. First consider a basis b satisfying |b ∩ F | = rank(F ) for all F ∈ Γ.

eb′ · ω = eb′ ·

(∑
F∈Γ

eF

)
=
∑
F∈Γ

eb′ · eF =
∑
F∈Γ

|b′ ∩ F |

≤
∑
F∈Γ

rank(F ) =
∑
F∈Γ

|b ∩ F | =
∑
F∈Γ

eb · eF = eb ·

(∑
F∈Γ

eF

)
= eb · ω

This shows that b is at least a basis of Mω .
Conversely assume eb′ · ω ≤ eb · ω always holds. Choose b′ such that |b ∩ F | = rank(F ) holds for all

F ∈ Γ. Then the equations above teaches us that
∑
F∈Γ |b ∩ F | =

∑
F∈Γ rank(F ). Since for all pairs of

summands the inequality |b ∩ F | ≤ rank(F ) holds, equality holds for them, too. 2

Corollary 4.2 For all building sets G the nested set complex N(LM ,G) is a refinement of the Bergman fan.

Proof: Already Ardila and Klivans [AK05, Thm. 1] showed that the ω ∈ Rn for which Mω is loopless are
exactly the ones lying in the interior of polyhedral cones spanned by incidence vectors of flats. Due to
Theorem 4.1 the induced matroid types are the same for all elements of any face of the realizations of our
complexes. 2

Example 4.3 Consider the matroid of Example 2.6 and 3.3. In Figure 1 we compare the excerpts of
the order complex ∆(L − {0̂, 1̂}), the nested set complex N (LM , Gmin) and the Bergman complex
B(M) which arise as subdivisions of each other. The matroid type of the two-dimensional face is
Mω = {1235, 1236, 1245, 1246}.
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1234 2

1

12

1256
(a) excerpt of ∆(LM )

1234 2

1 1256
(b) excerpt ofN (LM , Gmin)

1234 2

1 1256
(c) excerpt of B(M)

Figure 1: The same excerpt of all polyhedral complexes

5 Decomposition of matroid types
Definition 5.1 Let A be a subset of E(M). We say that A has full ω-rank if for all bases b ∈ Mω,
|A ∩ b| = rank(A) holds.

Note that the vertices of a face have full ω-rank by Theorem 4.1. Here is an immediate application of this
important definition.

Proposition 5.2 A matroid type Mω is loopless iff all sets A with full ω-rank are flats of M .

Proposition 5.3 LetA andB both having full ω-rank. ThenA∩B, A∪B and every connected component
of a set with full ω-rank have full ω-rank, too.

With this knowledge we see that the set of subsets with full ω-rank is a sublattice of LM . It has the property
that the join is already the union instead of just its span. Additionally it is closed under taking connected
components i.e. if an interval [A,B] in LM is isomorphic to [A,C1]× [A,C2] for A < C1, C2 < B and
A,B have ω-full rank then both C1 and C2 have this property, too. All information about Mω is contained
in this special sublattice. It is the sublattice, closed under taking connected components, which is induced
by the set of flacets and the elements 0̂, 1̂.

Theorem 5.4 Let Mω be the matroid type of any face of either the order complex ∆(LM ), the nested
set complex N (LM , Gmin) or the Bergman complex B(M) and Γ its set of vertices. Additionally let
Π :=

∨
F∈Γ(F | E(M) − F ) be the partition of E(M) which is the join in ΠE(M) of the partitions

consisting of just two blocks, the vertex and its complement. For any block α in Π, let Γα denote the
elements of Γ which contain α as a subset. Then,

Mω
∼=
⊕
α∈Π

M
[ ⋂

Γα \ α,
⋂

Γα

]
.

Example 5.5 For the matroid M of Example 2.6 and the face of the Bergman complex with vertices
1, 2, 1234, 1256, the partition Π is 1|2|34|56. Its matroid type decomposition is

M [∅, 1]⊕M [∅, 2]⊕M [12, 1234]⊕M [12, 1256].
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Corollary 5.6 LetM be a connected matroid. A set of flacets Γ = {F1, . . . , Fk}, with associated partition
Π :=

∨k
i (Fi | E(M)−Fi), is the set of vertices of a face of B(M) iff the following conditions are fulfilled:

• For all x in E(M) if x ∈ α then there is at least one basis b ∈M s.t.
|b ∩

⋂
Γα| = rank(

⋂
Γα), |b ∩

⋂
Γα\α| = rank(

⋂
Γα\α) and x ∈ b.

• There is a basis b ∈M such that |b ∩ F | = rank(F ) for all F ∈ Γ

• there is no other flacet F ′ of M with the property that |b ∩ F ′| = rank(F ′) for all bases b ∈ M ,
which fulfill |b ∩ F | = rank(F ) for all flacets F of Γ.

In this case
⊕

α∈ΠM [
⋂

Γα\α,
⋂

Γα] is the matroid type of the face and Γ its set of flacets.

Theorem 5.7 Let M be a connected matroid. For a face of its Bergman complex the decomposition of the
matroid type in theorem 5.4 is the finest one can get i.e. the direct summands are connected.

In order to show this, we will use the following propositions in the following way. We start with a purely
technical lemma which is made for prooving Proposition 5.9. Together with the latter and Proposition 5.10
one can show Proposition 5.11, which is the final ingrediant for the proof of the Theorem above.

Lemma 5.8 Let A be a connected flat. We denote the connected components of M [A,E(M)] by
K1, . . . ,Km. Let c be a circuit of M and x ∈ c ∩ Ki for a certain Ki. Then there exists a circuit
c′ of M such that c′ −A ⊆ c−A, x ∈ c′ ∩Ki and c′ −A is a circuit of M [A,E(M)].

Proposition 5.9 Let A be a connected flat of M and K1, . . . ,Kt connected components of M [A,E(M)].
Then Fi := A ∪

⋃
j 6=iKj = E(M)−Ki is a flacet of M .

Proposition 5.10 Let A ⊆ E(M) and A1, . . . , An connected components of M [∅, A]. We denote the
connected components of M [A,E(M)] by K1, . . . ,Kt. If A has full ω-rank, then for any Ki and any
connected component G of M [∅, A ∪ Ki], which intersects Ki, both A ∪Ki and G have full ω-rank, too.

Proposition 5.11 Every connected flat A of a matroid M is an intersection of flacets of M . Furthermore,
if A has full ω-rank, then so do these flacets. This means they are vertices of the face Mω of the Bergman
complex.

In the end we can compare the subdivision of a face of the order complex with the subdivisions of its
supporting faces of the coarser complexes.

Corollary 5.12 The decomposition of the matroid type in 5.4 for a face of the order complex is coarser
than the decomposition of the matroid type of its supporting face in the nested set complex.

The decomposition of the matroid type for a face of the nested set complex is coarser than the decompo-
sition of the matroid type of its supporting face in the Bergman complex.

Note that these relations are strict iff the dimension of the faces is increasing while taking the support face
in the next coarser complex. So for maximal faces the decompositions are all the same. Using this we can
easily see that the maximal faces of the Bergman complex correspond to transversal matroids i.e. direct
sums of matroids of rank 1.
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