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Abstract. An m-ballot path of size n is a path on the square grid consisting of north and east unit steps, starting at (0, 0), ending
at (mn,n), and never going below the line {x = my}. The set of these paths can be equipped with a lattice structure, called
the m-Tamari lattice and denoted by T (m)

n , which generalizes the usual Tamari lattice Tn obtained when m = 1. This lattice
was introduced by F. Bergeron in connection with the study of diagonally coinvariant spaces in three sets of n variables. The
representation of Sn on these spaces is conjectured to be closely related to the natural representation of Sn on (labelled) intervals
of the m-Tamari lattice studied in this paper. An interval [P,Q] of T (m)

n is labelled if the north steps of Q are labelled from 1
to n in such a way the labels increase along any sequence of consecutive north steps. The symmetric group Sn acts on labelled
intervals of T (m)

n by permutation of the labels. We prove an explicit formula, conjectured by F. Bergeron and the third author, for
the character of the associated representation of Sn. In particular, the dimension of the representation, that is, the number of labelled
m-Tamari intervals of size n, is found to be (m+ 1)n(mn+ 1)n−2. These results are new, even when m = 1. The form of these
numbers suggests a connection with parking functions, but our proof is not bijective. The starting point is a recursive description of
m-Tamari intervals. It yields an equation for an associated generating function, which is a refined version of the Frobenius series of
the representation. The form of this equation is highly non-standard: it involves two additional variables x and y, a derivative with
respect to y and iterated divided differences with respect to x. The hardest part of the proof consists in solving it, and we develop
original techniques to do so.

Résumé. Un chemin de m-Dyck de taille n est un chemin sur la grille carrée, formé de pas nord et est, qui commence en (0, 0),
finit en (mn,n), et ne passe jamais sous la droite {x = my}. L’ensemble de ces chemins peut être équipé d’une structure de
treillis, appelé treillis de m-Tamari et noté T (m)

n , qui généralise le treillis de Tamari classique, obtenu pour m = 1. Ce treillis a été
introduit par F. Bergeron en lien avec les espaces coinvariants diagonaux en trois jeux de n variables. On conjecture que l’action de
Sn sur ces espaces est reliée à la représentation naturelle de Sn sur les intervalles (étiquetés) du treillis de m-Tamari, action que
nous étudions ici. Un intervalle [P,Q] de T (m)

n est dit étiqueté si les pas nord de Q sont étiquetés de 1 à n de façon à croı̂tre le
long de chaque suite de pas nord. Le groupe symétrique Sn agit sur les intervalles étiquetés de T (m)

n en permutant les étiquettes.
Nous démontrons une formule explicite, conjecturée par F. Bergeron et le troisième auteur, pour le caractère de cette représentation
de Sn. En particulier, la dimension de cette représentation, c’est-à-dire le nombre d’intervalles de m-Tamari étiquetés de taille n,
est (m+ 1)n(mn+ 1)n−2. Ces résultats sont nouveaux, y compris pour m = 1. Leur forme suggère un lien avec les fonctions
de stationnement, mais notre preuve n’est pas bijective. Le point de départ est une description récursive des intervalles. Elle mène
à une équation pour une série génératrice associée, qui raffine la série de Frobenius de la représentation. Cette équation est d’une
forme très inhabituelle : elle fait intervenir deux variables supplémentaires x et y, une dérivée par rapport à y et des différences
divisées itérées par rapport à x. La partie la plus difficile de la preuve est la solution de cette équation, et nous développons une
technique originale pour y parvenir.
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1 Introduction and main result
An m-ballot path of size n is a path on the square grid consisting of north and east unit steps, starting at
(0, 0), ending at (mn, n), and never going below the line {x = my}. It is well-known that there are

1

mn+ 1

(
(m+ 1)n

n

)
such paths [DM47], and that they are in bijection with (m+ 1)-ary trees with n inner nodes.

François Bergeron recently defined on the set T (m)
n of m-ballot paths of size n an order relation. It is

convenient to describe it via the associated covering relation, exemplified in Figure 1.

Definition 1 Let P and Q be two m-ballot paths of size n. Then Q covers P if there exists in P an east
step a, followed by a north step b, such that Q is obtained from P by swapping a and S, where S is the
shortest factor of P that begins with b and is a (translated) m-ballot path.

≺ab b

a

S S

Fig. 1: The covering relation between m-ballot paths (m = 2).

It was shown in [BMFPR11] that this order endows T (m)
n with a lattice structure, which is called the

m-Tamari lattice of size n. When m = 1, it coincides with the classical Tamari lattice [BB09, FT67,
HT72, Knu06].

The interest in these lattices is motivated by their — still conjectural — connections with trivariate
diagonal coinvariant spaces [BPRar, BMFPR11]. Some of them are detailed at the end of this introduction.
In particular, it is believed that the representation of the symmetric group on these spaces is closely related
to the representation of the symmetric group on labelled m-Tamari intervals. The aim of this paper is to
characterize the latter representation, by describing explicitly its character.

So let us define this representation and state our main result. Let us call ascent of a ballot path a
maximal sequence of consecutive north steps. An m-ballot path of size n is labelled if the north steps are
labelled from 1 to n, in such a way the labels increase along ascents (see the upper paths in Figure 2).
These paths are in bijection with (1,m, . . . ,m)-parking functions of size n, in the sense of [SP02, Yan01]:
the function f associated with a path Q satisfies f(i) = k if the north step of Q labelled i lies at abscissa
k − 1. Using the cycle lemma [Rio69], it is easy to prove that the number of labelled m-ballot paths of
size n is

(mn+ 1)n−1. (1)
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Fig. 2: A labelled 2-Tamari interval, and its image under the action of σ = 23 5 6 1 4.

Now an m-Tamari interval [P,Q] is labelled if the upper path Q is labelled. The symmetric group Sn

acts on labelled intervals of T (m)
n by permuting labels, and then reordering them in each ascent (Figure 2).

This is the representation that we study here. We call it the m-Tamari representation of Sn. Our main
result is an explicit expression for the character χm of this representation, which was conjectured by
Bergeron and the third author [BPRar].

Theorem 2 Let λ = (λ1, . . . , λ`) be a partition of n and σ a permutation of Sn having cycle type λ.
Then for the m-Tamari representation of Sn,

χm(σ) = (mn+ 1)`−2
∏

1≤i≤`

(
(m+ 1)λi
mλi

)
. (2)

Since Sn acts by permuting labelled intervals, this is also the number of labelled m-Tamari intervals left
unchanged under the action of σ.

In particular, the dimension of the representation, that is, the number of labelled m-Tamari intervals of
size n, is

χm(id) = (m+ 1)n(mn+ 1)n−2. (3)

We were unable to find a bijective proof of these amazingly simple formulas. Instead, our proof uses
generating functions and goes as follows. We introduce a generating function F (m)(t, p;x, y) counting
labelled intervals according to multiple parameters, where p is an infinite sequence of variables p1, p2, . . .,
which can be thought of as power sums. We call this series the refined Frobenius series of the m-Tamari
representation (Section 2). Then, we describe a recursive construction of intervals and translate it into a
functional equation defining F (m)(t, p;x, y) (Proposition 7, Section 3). The form of this equation is new
to us, and its solution is the most difficult and original part of the paper. Due to lack of space, we only
give the proof for m = 1, after having explained the general principles of our approach, which are valid
for all m (Section 4). The complete version of this paper has appeared on the ArXiv [BMCPR12].

In the remainder of this section, we recall some of the conjectured connections between Tamari intervals
and trivariate diagonal coinvariant spaces. They seem to parallel the (now proved) connections between
ballot paths and bivariate diagonal coinvariant spaces, which have attracted considerable attention in the
past 20 years [GH02, Hag03, Hag08, HL05, Hai94, Hai02, Loe03] and are still a very active area of
research today, as shown by recent papers by Armstrong, Garsia, Haglund, Hicks, Loehr, Rhoades, Stout,
Xin, Zabrocki... which we do not cite in details here for the sake of concision.
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Let X = (xi,j)1≤i≤k
1≤j≤n

. The diagonal coinvariant space DRk,n is defined as the quotient of the ring

C[X] of polynomials in the coefficients of X by the ideal J generated by constant-term free polynomials
that are invariant under permuting the columns of X . For example when k = 2, denoting x1,j = xj and
x2,j = yj , the ideal J is generated by constant-term free polynomials f such that for all σ ∈ Sn,

f(X) = σ(f(X)), where σ(f(X)) = f(xσ(1), . . . , xσ(n), yσ(1), . . . , yσ(n)).

An m-extension of these spaces is of great importance here [GH96]. LetA be the ideal of C[X] generated
by alternants under the diagonal action described above. There is a natural action of Sn on the quotient
space Am−1

/
JAm−1. Let us twist this action by the (m − 1)st power of the sign representation ε: this

gives rise to spaces
DRmk,n := εm−1 ⊗Am−1

/
JAm−1,

so that DR1
k,n = DRk,n. It is now a famous theorem of Haiman [Hai02, HHL+05] that, as representa-

tions of Sn,
DRm2,n ∼= ε⊗ Parkm(n)

where Parkm(n) is the m-parking representation of Sn. This representation is defined as the action on
labelled m-ballot paths(i) that permutes the labels and then reorders them so that they increase in each
ascent. The character of this representation, evaluated at a permutation of cycle type λ = (λ1, . . . , λ`) is
(mn+ 1)`−1. This formula, which generalizes (1), is easily proved using the cycle lemma.

In the case of three sets of variables, it is conjectured by Bergeron and the third author [BPRar] that, as
representations of Sn,

DRm3,n ∼= ε⊗ Tamm(n),

where Tamm(n) is the representation of the symmetric group on labelled m-Tamari intervals that we
study in this paper. The fact that the dimension of this space seems to be given by (3) is an earlier
conjecture due to F. Bergeron (also observed for small values of n by Haiman [Hai94] in the case m = 1).

2 The refined Frobenius series
2.1 Definitions and notation
Let L be a commutative ring and t an indeterminate. We denote by L[t] (resp. L[[t]]) the ring of poly-
nomials (resp. formal power series) in t with coefficients in L. If L is a field, then L(t) denotes the
field of rational functions in t. This notation is generalized to polynomials, fractions and series in several
indeterminates. We denote by bars the reciprocals of variables: for instance, ū = 1/u, so that L[u, ū] is
the ring of Laurent polynomials in u with coefficients in L. The coefficient of un in a Laurent polynomial
F (u) is denoted by [un]F (u).

We use classical notation relative to integer partitions, which we recall briefly. A partition λ of n is a
non-increasing sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λ` > 0 summing to n. We write λ ` n to mean
that λ is a partition of n. Each component λi is called a part. For i ≥ 1, the number of parts equal to i in
λ is denoted by mi(λ). The cycle type of a permutation σ ∈ Sn is the partition of n whose parts are the
lengths of the cycles of σ. This partition is denoted by λ(σ). The number of permutations σ ∈ Sn having
cycle type λ ` n equals n!

zλ
where zλ :=

∏
i≥1 i

mi(λ)mi(λ)!.

(i) which, as discussed above, are equivalent to parking functions
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We let p = (p1, p2, . . . ) be an infinite list of independent variables, and for λ a partition of n, we let
pλ = pλ1

. . . pλ`(λ) . The reader may view the pλ’s as the power sums in some ground set of variables.
This point of view is not really needed in this paper, but it explains why we call refined Frobenius series
our main generating function. Throughout the paper, we denote by K = Q(p1, p2, . . . ) the field of rational
fractions in the pi’s with rational coefficients.

Given a Laurent polynomial P (u) in a variable u, we denote by [u≥]P (u) the non-negative part of
P (u) in u, defined by

[u≥]P (u) =
∑
i≥0

Piu
i if P (u) =

∑
i∈Z

Piu
i.

The definition is then extended by linearity to power series whose coefficients are Laurent polynomials in
u. We define similarly the positive part of P (u), denoted by [u>]P (u).

We now introduce several series and polynomials which play an important role in this paper. They
depend on two independent variables u and z. First, we let v ≡ v(u) be the following Laurent polynomial
in u:

v = (1 + u)m+1u−m.

We now consider the following series:

V (u) =
∑
k≥1

pk
k
vkzk. (4)

It is is a formal power series in z whose coefficients are Laurent polynomials in u over the field K. Finally
we define the two following formal power series in z:

L ≡ L(z, p) := [u0]V (u) =
∑
k≥1

pk
k

(
(m+ 1)k

mk

)
zk, (5)

K(u) ≡ K(z, p;u) := [u>]V (u) =
∑
k≥1

pk
k
zk

(m+1)k∑
i=mk+1

(
(m+ 1)k

i

)
ui−mk. (6)

In our notation, we will often omit the dependence of series in t, z, and p, just keeping track, as above, of
the variables u, x and y, which play a special role in our equations.

2.2 A refined theorem
As stated in Theorem 2, the value of the character χm(σ) is the number of labelled intervals fixed under
the action of σ, and one may see (2) as an enumerative result. Our main result is a refinement of (2) where
we take into account two more parameters, which we now define. The first parameter is the number of
contacts of the interval: A contact of an m-ballot path P is a vertex of P lying on the line {x = my}, and
a contact of an m-Tamari interval [P,Q] is a contact of the lower path P . We denote by c(P ) the number
of contacts of P .

By definition of the action of Sn on m-Tamari intervals, a labelled interval I = [P,Q] is fixed by a
permutation σ ∈ Sn if and only if σ stabilizes the set of labels of each ascent of Q. Equivalently, each
cycle of σ is contained in the label set of an ascent of Q. If this holds, we let rσ(I) be the number of
cycles of σ occurring in the first ascent of Q: this is our second parameter.
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The main object we handle in this paper is a generating function for pairs (σ, I), where σ is a permuta-
tion and I = [P,Q] is a labelled m-Tamari interval fixed by σ. In this series F (m)(t, p;x, y), pairs (σ, I)
are counted by the size (variable t), the number c(P ) of contacts (variable x), the parameter rσ(Q) (vari-
able y), and the cycle type of σ (one variable pi for each cycle of size i in σ). Moreover, F (m)(t, p;x, y)
is an exponential series in t. That is,

F (m)(t, p;x, y) :=
∑
n≥0

tn

n!

∑
I=[P,Q]

∑
σ∈Stab(I)

xc(P )yrσ(Q)pλ(σ), (7)

where the second and third sum are taken respectively on all labelled m-Tamari intervals I of size n, and
on all permutations σ ∈ Sn fixing I . Note that when (x, y) = (1, 1), we have:

F (m)(t, p; 1, 1) =
∑
n≥0

tn

n!

∑
I=[P,Q]

∑
σ∈Stab(I)

pλ(σ) =
∑
n≥0

tn

n!

∑
σ∈Sn

χm(σ)pλ(σ) =
∑
n≥0

tn
∑
λ`n

χm(λ)
pλ
zλ
,

since the value of character depends only on the cycle type (which justifies the notation χm(λ)), and n!
zλ

is
the number of permutations of cycle type λ. Hence, in representation theoretic terms, [tn]F (m)(t, p; 1, 1)
is the Frobenius characteristic of the m-Tamari representation of Sn, also equal to

∑
λ`n c(λ)sλ, where

sλ is the Schur function of shape λ and c(λ) is the multiplicity of the irreducible representation associated
with λ in them-Tamari representation. For this reason, we call F (m)(t, p;x, y) a refined Frobenius series.

Our most general result is a (complicated) expression of F (m)(t, p;x, y), which becomes simple when
y = 1. We state here the result for y = 1.

Theorem 3 Let F (m)(t, p;x, y) ≡ F (t, p;x, y) be the refined Frobenius series of the m-Tamari repre-
sentation, defined by (7). Let z and u be two indeterminates, and write

t = ze−mL and x = (1 + u)e−mK(u), (8)

where L ≡ L(z, p) and K(u) ≡ K(z, p;u) are defined by (5) and (6). Then F (t, p;x, 1) becomes a
series in z with polynomial coefficients in u and the pi, and this series has a simple expression:

F (t, p;x, 1) = (1 + ū)eK(u)+L
(

(1 + u)e−mK(u) − 1
)

(9)

with ū = 1/u. In particular, in the limit u→ 0, we obtain

F (t, p; 1, 1) = eL

1−m
∑
k≥1

pk
k
zk
(

(m+ 1)k

mk + 1

) .

Extracting the coefficient of pλ/zλ (via Lagrange’s inversion) shows that for a permutation σ ∈ Sn of
cycle type (λ1, . . . , λ`), the value of the m-Tamari character at σ is given by (2).

Discovering the parametrization (8) of t in terms of z was easy using the conjectured value (2) of the
character. Finding the parametrization of x in terms of u was difficult, but essential, since the variable x is
crucial in our approach (see (11)). Our expression of F (m)(t, p;x, y) will appear in the complete version
of the paper. When m = 1, it takes a reasonably simple form.
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Theorem 4 Let F (1)(t, p;x, y) ≡ F (t, p;x, y) be the refined Frobenius series of the 1-Tamari represen-
tation, defined by (7). Let z and u be two indeterminates, define V (u), L andK(u) by (4–6) (withm = 1)
and set t = ze−L and x = (1 + u)e−K(u). Then F (t, p;x, y) becomes a formal power series in z with
polynomial coefficients in u and y, given by

F (t, p;x, y) = (1 + u) [u≥]
(
eyV (u)−K(u) − ūeyV (u)−K(ū)

)
. (10)

Remarks
1. It is easily seen that the case y = 1 of (10) reduces to the case m = 1 of (9) .
2. When p1 = 1 and pi = 0 for i > 1, the only permutation that contributes is the identity. We are thus
simply counting labelled 1-Tamari intervals, by their size (variable t), the number of contacts (variable x)
and the size of the first ascent (variable y). We have V (u) = v = (1 + u)(1 + ū), K(u) = zu and the
extraction of the positive part in u in (10) can be performed explicitly:

F (t, 1, 0, . . . ;x, y) = (1 + u)[u≥]
(
eyzv−zu − ūeyzv−zū

)
= (1 + u)e2yz

 ∑
0≤i≤j

uj−i
zi+jyi(y − 1)j

i!j!
−
∑

0≤j<i

ui−j−1 z
i+jyi(y − 1)j

i!j!

 .

When x = 1, that is, u = 0, the double sums in this expression reduce to simple sums, and the generating
function of labelled Tamari intervals, counted by the size and the length of the first ascent, is expressed in
terms of Bessel functions:

F (t, 1, 0, . . . ; 1, y)

e2yz
=
∑
i≥0

z2iyi(y − 1)i

i!2
−
∑
j≥0

z2j+1yj+1(y − 1)j

(j + 1)!j!
.

3 A functional equation
In this section, we describe a recursive construction of labelled m-Tamari intervals, and translate it into a
functional equation satisfied by the generating function F (m)(t, p;x, y).

We encode the north (resp. east) steps of a ballot path by the letters N and E. We first recall a result that
allows us to see the m-Tamari lattice as a sublattice of the standard 1-Tamari lattice (called Tamari lattice
for short; similarly, a 1-ballot path is called below a ballot path).

Proposition 5 ([BMFPR11, Prop. 4]) Replacing each north step of an m-ballot path by a sequence of
m north steps induces an order preserving bijection between T (m)

n and the sublattice of Tnm consisting
of the paths that are larger than or equal to NmEm . . .NmEm.

The functional equation of Proposition 7 below follows, although not in a straighforward manner, from a
recursive description of Tamari intervals that can be found in [BMFPR11]. We say that a Tamari interval
I = [P,Q] is pointed if its lower path P has a distinguished contact. Such a contact splits P into two
ballot paths P ` and P r, respectively located to the left and to the right of the contact. We use the notation
I = [P `P r, Q] to denote a pointed Tamari interval.

Proposition 6 ([BMFPR11]) Let I1 = [P `1P
r
1 , Q1] be a pointed Tamari interval, and let I2 = [P2, Q2]

be a Tamari interval. Construct the ballot paths P = NP `1EP
r
1P2 and Q = NQ1EQ2. Then I = [P,Q]

is a Tamari interval. Moreover, the mapping (I1, I2) 7→ I is a bijection between pairs (I1, I2) formed of
a pointed Tamari interval and a Tamari interval, and Tamari intervals I of positive size.
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We do not give here the proof of the following proposition, but refer the reader to [BMCPR12].

Proposition 7 Form ≥ 1, let F (m)(t, p;x, y) ≡ F (x, y) be the refined Frobenius series of them-Tamari
representation, defined by (7). Then

F (x, y) = exp

y∑
k≥1

pk
k

(
tx(F (x, 1)∆)(m)

)(k)

 (x), (11)

where ∆ is the following divided difference operator

∆S(x) =
S(x)− S(1)

x− 1
,

and the powers m and k mean respectively that the operator Γ : G(x, y) 7→ F (x, 1) ·∆G(x, y) is applied
m times, and that the operator G(x, y) 7→ tx · ΓmG(x, y) is applied k times.

Equivalently, F (x, 0) = x and

∂F

∂y
(x, y) =

∑
k≥1

pk
k

(
tx(F (x, 1)∆)(m)

)(k)

(F (x, y)). (12)

4 Principle of the proof, and the case m = 1

4.1 Principle of the proof
Let us consider the functional equation (12), together with the initial condition F (t, p;x, 0) = x. Perform
the change of variables (8), and denote G(z, p;u, y) ≡ G(u, y) = F (t, p;x, y). Then G(u, y) is a series
in z with coefficients in K[u, y], satisfying

∂G

∂y
(u, y) =

∑
k≥1

pk
k

(
z(1 + u)e−m(K(u)+L)

(
uG(u, 1)

(1 + u)e−mK(u) − 1
∆u

)(m)
)(k)

G(u, y), (13)

with ∆uH(u) = H(u)−H(0)
u , and the initial condition

G(u, 0) = (1 + u)e−mK(u). (14)

This pair of equations defines G(u, y) ≡ G(z, p;u, y) uniquely as a formal power series in z. Indeed, the
coefficient of zn in G can be computed inductively from these equations (one first determines the coeffi-
cient of zn in ∂G

∂y , which can be expressed, thanks to (13), in terms of the coefficients of zi in G for i < n.
Then the coefficient of zn inG is obtained by integration with respect to y, using the initial condition (14)).
Hence, if we exhibit a series G̃(z, p;u, y) that satisfies both equations, then G̃(z, p;u, y) = G(z, p;u, y).
We are going to construct such a series.

Let
G1(z, p;u) ≡ G1(u) = (1 + ū)eK(u)+L

(
(1 + u)e−mK(u) − 1

)
.
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Then G1(u) is a series in z with coefficients in K[u], which, as we will see, coincides with G(u, 1).
Consider now the following equation, obtained from (13) by replacing G(u, 1) by G1(u):

∂G̃

∂y
(z, p;u, y) =

∑
k≥1

pk
k

(
z(1 + u)e−m(L+K(u))

(
uG1(u)

(1 + u)e−mK(u) − 1
∆u

)(m)
)(k)

G̃(z, p;u, y),

(15)
with the initial condition

G̃(z, p;u, 0) = (1 + u)e−mK(u). (16)

Eq. (15) can be rewritten as

∂G̃

∂y
(u, y) =

∑
k≥1

pk
k

(
z(1 + u)e−mK(u)Λ(m)

)(k)

G̃(u, y) (17)

where Λ is the operator defined by

Λ(H)(u) = (1 + u)eK(u)H(u)−H(0)

u
.

Again, it is not hard to see that (17) and the initial condition (16) define a unique series in z, denoted
G̃(z, p;u, y) ≡ G̃(u, y). The coefficients of this series lie in K[u, y]. The principle of our proof can be
described as follows.

If we prove that G̃(u, 1) = G1(u), then the equation (15) satisfied by G̃ coincides with the
equation (13) that defines G, and thus G̃(u, y) = G(u, y). In particular, G1(z, p;u) =
G̃(z, p;u, 1) = G(z, p;u, 1) = F (t, p;x, 1), and Theorem 3 is proved.

4.2 The case m = 1

Take m = 1. We describe the three steps that, starting from (17), prove that G̃(u, 1) = G1(u). In passing,
we establish the expression (10) of F (t, p;x, y) (equivalently, of G̃(z, p;u, y)) given in Theorem 4.

4.2.1 A homogeneous differential equation and its solution
When m = 1, the equation (17) defining G̃(z;u, y) ≡ G̃(u, y) reads

∂G̃

∂y
(u, y) =

∑
k≥1

pk
k
zk
(

(1 + u)(1 + ū) Ω
)(k)

G̃(u, y), (18)

where ū = 1/u and the operator Ω is defined by ΩH(u) = H(u)−H(0), with the initial condition

G̃(u, 0) = (1 + u)e−K(u). (19)

These equations imply that G̃(−1, y) = 0. The following lemma provides us with a crucial symmetry
property.
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Lemma 8 For all k ≥ 0 one has:(
(1 + u)(1 + ū) Ω

)(k)

G̃(u, y) =
(

(1 + u)(1 + ū)
)k
G̃(u, y)− Pk(v, y)

where Pk(v, y) ∈ K[y][[z]][v] is a polynomial in v = (1 + u)(1 + ū).

Proof: By induction on k. Alternatively, readers well acquainted with lattice path enumeration may view
this lemma as a form of the reflection principle. 2

The quantity Pk(v, y) is invariant under the substitution u 7→ ū. This symmetry will enable us to
eliminate some a priori intractable terms in (18). Replacing u by ū in (18) gives

∂G̃

∂y
(ū, y) =

∑
k≥1

pk
k
zk
(

(1 + u)(1 + ū)Ω
)(k)

G̃(ū, y),

so that, applying Lemma 8 and using v = (1 + u)(1 + ū) we obtain:

∂

∂y

(
G̃(u, y)− G̃(ū, y)

)
=
∑
k≥1

pk
k
zk(1 + u)k(1 + ū)k

(
G̃(u, y)− G̃(ū, y)

)
.

This is now a homogeneous linear differential equation satisfied by G̃(u, y)−G̃(ū, y). It is readily solved,
and the initial condition (19) yields

G̃(u, y)− G̃(ū, y) = (1 + u)
(
e−K(u) − ūe−K(ū)

)
eyV (u), (20)

where V (u) =
∑
k≥1

pk
k
zk(1 + u)k(1 + ū)k as in (4).

4.2.2 Reconstruction of G̃(u, y)

Recall that G̃(u, y) ≡ G̃(z, p;u, y) is a series in z with coefficients in K[u, y]. Hence, by extracting from
the above equation the positive part in u (as defined in Section 2.1), we obtain

G̃(u, y)− G̃(0, y) = [u>]
(

(1 + u)
(
e−K(u) − ūe−K(ū)

)
eyV (u)

)
.

For any Laurent polynomial P , we have

[u>](1 + u)P (u) = (1 + u)[u>]P (u) + u[u0]P (u).

Hence

G̃(u, y)− G̃(0, y) = (1 + u)[u>]
(
eyV (u)

(
e−K(u) − ūe−K(ū)

))
+ u[u0]

(
eyV (u)

(
e−K(u) − ūe−K(ū)

))
.
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Setting u = −1 in this equation gives, since G̃(−1, y) = 0,

−G̃(0, y) = −[u0]
(
eyV (u)

(
e−K(u) − ūe−K(ū)

))
,

so that finally,

G̃(u, y) = (1 + u)[u>]
(
eyV (u)

(
e−K(u) − ūe−K(ū)

))
+(1 + u)[u0]

(
eyV (u)

(
e−K(u) − ūe−K(ū)

))
= (1 + u)[u≥]

(
eyV (u)

(
e−K(u) − ūe−K(ū)

))
. (21)

As explained in Section 4.1, G̃(u, y) = G(u, y) will be proved if we establish that G̃(u, 1) = G1(u). This
is the final step of our proof.

4.2.3 The case y = 1

Eq. (21) completely describes the solution of (18). It remains to check that G̃(u, 1) = G1(u), that is,

G̃(u, 1) = (1 + ū)eK(u)+L
(

(1 + u)e−K(u) − 1
)
. (22)

Let us set y = 1 in (21). Using V (u) = K(u) + L+K(ū), this gives:

G̃(u, 1) = (1 + u)[u≥]
(
eV (u)−K(u) − ūeV (u)−K(ū)

)
= (1 + u)[u≥]

(
eL+K(ū) − ūeL+K(u)

)
= (1 + u)eL

(
1− ūeK(u) + ū

)
,

which coincides with (22). Hence G̃(z, p;u, y) = G(z, p;u, y) = F (t, p;x, y) (with the change of
variables (8)), and Theorem 4 is proved, using (21).

4.3 A few words on the general case
Assumem > 1. Recall from Section 4.1 that we start from (17), and want to prove that G̃(u, 1) = G1(u).
We consider the m + 1 roots u0, . . . , um of the equation v(u) = v(ui), where v(u) = (1 + u)m+1ūm.
They play a role similar to u and ū in Section 4.2. This enables us to obtain a generalization of (20),
involving a linear combination of the m + 1 series G̃(ui, y). The reconstruction of G̃(u, y) and G̃(u, 1)
from this equation is possible, but difficult, and the expression it gives for G̃(u, 1) did not allow us to
prove directly that G̃(u, 1) = G1(u). Instead, we first proved that the generalization of (20) has a unique
solution when y = 1, and then checked that G1(u) is a solution. Proving uniqueness of the solution is
difficult, and makes the proof for m > 1 significantly longer than for m = 1.
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[BMFPR11] M. Bousquet-Mélou, É. Fusy, and L.-F. Préville-Ratelle. The number of intervals in the m-Tamari
lattices. Electron. J. Combin., 2011. Arxiv 1106.1498, to appear.
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