Noncommutative symmetric functions with matrix parameters (extended abstract)

Alain Lascoux, Jean-Christophe Novelli, and Jean-Yves Thibon
Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454
Marne-la-Vallée cedex 2, France

Abstract

We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki.

Résumé. Nous définissons de nouvelles familles de fonctions symétriques non-commutatives et de fonctions quasisymétriques, dépendant de deux matrices de paramètres, et plus généralement, de paramètres associés à des chemins dans un arbre binaire. Pour des spécialisations appropriées, on retrouve les familles à deux vecteurs de Hivert-Lascoux-Thibon et les fonctions de Macdonald non-commutatives de Bergeron-Zabrocki.

Keywords: Noncommutative symmetric functions, Quasi-symmetric functions, Macdonald polynomials

1 Introduction

The theory of Hall-Littlewood, Jack, and Macdonald polynomials is one of the most interesting subjects in the modern theory of symmetric functions. It is well-known that combinatorial properties of symmetric functions can be explained by lifting them to larger algebras (the so-called combinatorial Hopf algebras), the simplest examples being Sym (Noncommutative symmetric functions [3]) and its dual QSym (Quasisymmetric functions [5]).

There have been several attempts to lift Hall-Litttlewood and Macdonald polynomials to Sym and QSym [1, 7, 8, 13, 14]. The analogues defined in [1] were similar to, though different from, those of [8]. These last ones admitted multiple parameters q_{i} and t_{i}, which however could not be specialized to recover the version of [1].

The aim of this article is to show that many more parameters can be introduced in the definition of such bases. Actually, one can have a pair of $n \times n$ matrices $\left(Q_{n}, T_{n}\right)$ for each degree n. The main properties established in [1] and [8] remain true in this general context, and one recovers the BZ and HLT polynomials for appropriate specializations of the matrices.

In the last section, another possibility involving quasideterminants is explored.

2 Notations

Our notations for noncommutative symmetric functions will be as in [3, 10]. The Hopf algebra of noncommutative symmetric functions is denoted by Sym, or by $\operatorname{Sym}(A)$ if we consider the realization in terms of an auxiliary alphabet. Bases of $\mathbf{S y m}_{n}$ are labelled by compositions I of n. The noncommutative complete and elementary functions are denoted by S_{n} and Λ_{n}, and the notation S^{I} means $S_{i_{1}} \ldots S_{i_{r}}$. The ribbon basis is denoted by R_{I}.

The notation $I \vDash n$ means that I is a composition of n. The conjugate composition is denoted by I^{\sim}. The graded dual of Sym is $Q S y m$ (quasi-symmetric functions). The dual basis of $\left(S^{I}\right)$ is $\left(M_{I}\right)$ (monomial), and that of $\left(R_{I}\right)$ is $\left(F_{I}\right)$. The descent set of $I=\left(i_{1}, \ldots, i_{r}\right)$ is $\operatorname{Des}(I)=\left\{i_{1}, i_{1}+\right.$ $\left.i_{2}, \ldots, i_{1}+\cdots+i_{r-1}\right\}$.

Finally, there are two operations on compositions: if $I=\left(i_{1}, \ldots, i_{r}\right)$ and $J=\left(j_{1}, \ldots, j_{s}\right)$, the composition $I . J$ is $\left(i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{s}\right)$ and $I \triangleright J$ is $\left(i_{1}, \ldots, i_{r}+j_{1}, \ldots, j_{s}\right)$.

$3 \mathbf{S y m}_{n}$ as a Grassmann algebra

Since for $n>0, \mathbf{S y m}_{n}$ has dimension 2^{n-1}, it can be identified (as a vector space) with a Grassmann algebra on $n-1$ generators $\eta_{1}, \ldots, \eta_{n-1}$ (that is, $\eta_{i} \eta_{j}=-\eta_{j} \eta_{i}$, so that in particular $\eta_{i}^{2}=0$). This identification is meaningful, for example, in the context of the representation theory of the 0 -Hecke algebras $H_{n}(0)$ (see [2]).

If I is a composition of n with descent set $D=\left\{d_{1}, \ldots, d_{k}\right\}$, we make the identification

$$
\begin{equation*}
R_{I} \longleftrightarrow \eta_{D}:=\eta_{d_{1}} \eta_{d_{2}} \ldots \eta_{d_{k}} \tag{1}
\end{equation*}
$$

For example, $R_{213} \leftrightarrow \eta_{2} \eta_{3}$. We then have

$$
\begin{equation*}
S^{I} \longleftrightarrow\left(1+\eta_{d_{1}}\right)\left(1+\eta_{d_{2}}\right) \ldots\left(1+\eta_{d_{k}}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda^{I} \longleftrightarrow \prod_{i=1}^{n-1} \theta_{i} \tag{3}
\end{equation*}
$$

where $\theta_{i}=\eta_{i}$ if $i \notin D$ and $\theta_{i}=1+\eta_{i}$ otherwise. Other bases have simple expression under this identification, e.g., Ψ_{n}, Φ_{n} and Hivert's Hall-Littlewood basis [7].

3.1 Structure on the Grassmann algebra

Let $*$ be the anti-involution given by $\eta_{i}^{*}=(-1)^{i} \eta_{i}$. The Grassmann integral of any function f is defined by

$$
\begin{equation*}
\int d \eta f:=f_{12 \ldots n-1}, \quad \text { where } \quad f=\sum_{k} \sum_{i_{1}<\cdots<i_{k}} f_{i_{1} \ldots i_{k}} \eta_{i_{1}} \ldots \eta_{i_{k}} \tag{4}
\end{equation*}
$$

We define a bilinear form on $\mathbf{S y m}_{n}$ by

$$
\begin{equation*}
(f, g)=\int d \eta f^{*} g \tag{5}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left(R_{I}, R_{J}\right)=(-1)^{\ell(I)-1} \delta_{I, \bar{J}^{\sim}}, \tag{6}
\end{equation*}
$$

so that this is (up to an unessential sign) the Bergeron-Zabrocki scalar product [1, Eq. (4)].

3.2 Factorized elements in the Grassman algebra

Now, for a sequence of parameters $Z=\left(z_{1}, \ldots, z_{n-1}\right)$, let

$$
\begin{equation*}
K_{n}(Z)=\left(1+z_{1} \eta_{1}\right)\left(1+z_{2} \eta_{2}\right) \ldots\left(1+z_{n-1} \eta_{n-1}\right) . \tag{7}
\end{equation*}
$$

We then have
Lemma 3.1

$$
\begin{equation*}
\left(K_{n}(X), K_{n}(Y)\right)=\prod_{i=1}^{n-1}\left(y_{i}-x_{i}\right) \tag{8}
\end{equation*}
$$

3.3 Bases of Sym

We shall investigate bases of $\mathbf{S y m}_{n}$ of the form

$$
\begin{equation*}
\tilde{\mathrm{H}}_{I}=K_{n}\left(Z_{I}\right)=\sum_{J} \tilde{\mathbf{k}}_{I J} R_{J} \tag{9}
\end{equation*}
$$

where Z_{I} is a sequence of parameters depending on the composition I of n.
The bases defined in [8] and [1] are of the previous form and for both of them, the determinant of the Kostka matrix $\mathcal{K}=\left(\tilde{\mathbf{k}}_{I J}\right)$ is a product of linear factors (as for ordinary Macdonald polynomials). This is explained by the fact that these matrices have the form

$$
\left(\begin{array}{ll}
A & x A \tag{10}\\
B & y B
\end{array}\right)
$$

where A and B have a similar structure, and so on recursively. Indeed, for such matrices,
Lemma 3.2 Let A, B be two $m \times m$ matrices. Then,

$$
\left|\begin{array}{ll}
A & x A \tag{11}\\
B & y B
\end{array}\right|=(y-x)^{m} \operatorname{det} A \cdot \operatorname{det} B
$$

3.4 Duality

Similarly, the dual vector space $Q \operatorname{Sym}_{n}=\mathbf{S y m}_{n}^{*}$ can be identified with a Grassmann algebra on another set of generators $\xi_{1}, \ldots, \xi_{n-1}$. Encoding the fundamental basis F_{I} of Gessel [5] by

$$
\begin{equation*}
\xi_{D}:=\xi_{d_{1}} \xi_{d_{2}} \ldots \xi_{d_{k}} \tag{12}
\end{equation*}
$$

the usual duality pairing such that the F_{I} are dual to the R_{I} is given in this setting by

$$
\begin{equation*}
\left\langle\xi_{D}, \eta_{E}\right\rangle=\delta_{D E} \tag{13}
\end{equation*}
$$

Let

$$
\begin{equation*}
L_{n}(Z)=\left(z_{1}-\xi_{1}\right) \ldots\left(z_{n-1}-\xi_{n-1}\right) \tag{14}
\end{equation*}
$$

Then, as above, we have a factorization identity:

Lemma 3.3

$$
\begin{equation*}
\left\langle L_{n}(X), K_{n}(Y)\right\rangle=\prod_{i=1}^{n-1}\left(x_{i}-y_{i}\right) \tag{15}
\end{equation*}
$$

4 Bases associated with paths in a binary tree

Let $\mathbf{y}=\left\{y_{u}\right\}$ be a family of indeterminates indexed by all boolean words of length $\leq n-1$. For example, for $n=3$, we have the six parameters $y_{0}, y_{1}, y_{00}, y_{01}, y_{10}, y_{11}$.

We can encode a composition I with descent set D by the boolean word $u=\left(u_{1}, \ldots, u_{n-1}\right)$ such that $u_{i}=1$ if $i \in D$ and $u_{i}=0$ otherwise.

Let us denote by $u_{m \ldots p}$ the sequence $u_{m} u_{m+1} \ldots u_{p}$ and define

$$
\begin{equation*}
P_{I}:=\left(1+y_{u_{1}} \eta_{1}\right)\left(1+y_{u_{1 \ldots 2}} \eta_{2}\right) \ldots\left(1+y_{u_{1 \ldots n-1}} \eta_{n-1}\right) \tag{16}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
P_{I}:=K_{n}\left(Y_{I}\right) \quad \text { with } \quad Y_{I}=\left(y_{u_{1}}, y_{u_{1 \ldots 2}}, \ldots, y_{u}\right)=:\left(y_{k}(I)\right) \tag{17}
\end{equation*}
$$

Similarly, let

$$
\begin{equation*}
Q_{I}:=\left(y_{w_{1}}-\xi_{1}\right)\left(y_{w_{1 \ldots 2}}-\xi_{2}\right) \ldots\left(y_{w_{1 \ldots n-1}}-\xi_{n-1}\right)=: L_{n}\left(Y^{I}\right) \tag{18}
\end{equation*}
$$

where $w_{1 \ldots k}=u_{1} \ldots u_{k-1} \overline{u_{k}}$ where $\overline{u_{k}}=1-u_{k}$, so that

$$
\begin{equation*}
Y^{I}:=\left(y_{w_{1}}, y_{w_{1 \ldots 2}}, \ldots, y_{w_{1 \ldots n-1}}\right)=:\left(y^{k}(I)\right) \tag{19}
\end{equation*}
$$

4.1 Kostka matrices

The Kostka matrix is defined as the transpose of the transition matrices from P_{I} to R_{J}. This matrix is recursively of the form of Eq. 10. Thus, its determinant factors completely. For $n=4$, it is

$$
\begin{equation*}
\left(y_{1}-y_{0}\right)^{4}\left(y_{01}-y_{00}\right)^{2}\left(y_{11}-y_{10}\right)^{2}\left(y_{001}-y_{000}\right)\left(y_{011}-y_{010}\right)\left(y_{101}-y_{100}\right)\left(y_{111}-y_{110}\right) \tag{20}
\end{equation*}
$$

Proposition 4.1 The bases $\left(P_{I}\right)$ and $\left(Q_{I}\right)$ are adjoint to each other, up to normalization:

$$
\begin{equation*}
\left\langle Q_{I}, P_{J}\right\rangle=\left\langle L_{n}\left(Y^{I}\right), K_{n}\left(Y_{J}\right)\right\rangle=\prod_{k=1}^{n-1}\left(y^{k}(I)-y_{k}(J)\right\rangle \tag{21}
\end{equation*}
$$

which is indeed zero unless $I=J$.
From this, it is easy to derive a product formula for the basis P_{I}.
Proposition 4.2 Let I and J be two compositions of respective sizes n and m. The product $P_{I} P_{J}$ is a sum over an interval of the lattice of compositions

$$
\begin{equation*}
P_{I} P_{J}=\sum_{K \in\left[I \triangleright(m), I \cdot\left(1^{m}\right)\right]} c_{I J}^{K} P_{K} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{I J}^{K}=\frac{\left\langle L_{n+m}\left(Y^{K}\right), K_{n+m}\left(Y_{I} \cdot 1 \cdot Y_{J}\right)\right\rangle}{\left\langle Q_{K}, P_{K}\right\rangle} \tag{23}
\end{equation*}
$$

where $Y_{I} \cdot 1 \cdot Y_{J}$ stands for the sequence $\left(y_{1}(I), \ldots, y_{n}(I), 1, y_{1}(J), \ldots, y_{m}(J)\right)$.

4.2 The quasi-symmetric side

As we have seen before, the $\left(Q_{I}\right)$ being dual to the $\left(P_{I}\right)$, the inverse Kostka matrix is given by the simple construction:

Proposition 4.3 The inverse of the Kostka matrix is given by

$$
\begin{equation*}
\left(\mathcal{K}_{n}^{-1}\right)_{I J}=(-1)^{\ell(I)-1} \prod_{d \in \operatorname{Des}(\bar{I} \sim)} y^{d}(J) \prod_{p=1}^{n-1} \frac{1}{y^{p}(J)-y_{p}(J)} \tag{24}
\end{equation*}
$$

4.3 Some specializations

Let us now consider the specialization sending all y_{w} to 1 if w ends with a 1 and denote by \mathcal{K}^{\prime} the matrix obtained by this specialization. Then, as in [8, p. 10],

Proposition 4.4 Let n be an integer. Then

$$
\begin{equation*}
S_{n}=\mathcal{K}_{n} \mathcal{K}_{n}^{\prime-1} \tag{25}
\end{equation*}
$$

is lower triangular. More precisely, let Y_{J}^{\prime} be the image of Y_{J} by the previous specialization and define Y^{J} in the same way. Then the coefficient $s_{I J}$ indexed by (I, J) is

$$
\begin{equation*}
s_{I J}=\prod_{k=1}^{n-1} \frac{y_{k}(I)-y^{\prime k}(J)}{y_{k}^{\prime}(J)-y^{\prime k}(J)} \tag{26}
\end{equation*}
$$

5 The two-matrix family

5.1 A specialization of the paths in a binary tree

The above bases can now be specialized to bases $\tilde{H}(A ; Q, T)$, depending on two infinite matrices of parameters. Label the cells of the ribbon diagram of a composition I of n with their matrix coordinates as follows:

We associate a variable $z_{i j}$ with each cell except $(1,1)$ by setting $z_{i j}:=q_{i, j-1}$ if (i, j) has a cell on its left, and $z_{i j}:=t_{i-1, j}$ if (i, j) has a cell on its top. The alphabet $Z(I)=\left(z_{j}(I)\right)$ is the sequence of the $z_{i j}$ in their natural order.

Next, if J is a composition of the same integer n, form the monomial

$$
\begin{equation*}
\tilde{\mathbf{k}}_{I J}(Q, T)=\prod_{d \in \operatorname{Des}(J)} z_{d}(I) \tag{28}
\end{equation*}
$$

For example, with $I=(4,1,2,1)$ and $J=(2,1,1,2,2)$, we have $\operatorname{Des}(J)=\{2,3,4,6\}$ and $\tilde{\mathbf{k}}_{I J}=$ $q_{12} q_{13} t_{14} q_{34}$.
Definition 5.1 Let $Q=\left(q_{i j}\right)$ and $T=\left(t_{i j}\right)(i, j \geq 1)$ be two infinite matrices of commuting indeterminates. For a composition I of n, the noncommutative (Q, T)-Macdonald polynomial $\tilde{\mathrm{H}}_{I}(A ; Q, T)$ is

$$
\begin{equation*}
\tilde{\mathrm{H}}_{I}(A ; Q, T)=K_{n}(A ; Z(I))=\sum_{J \models n} \tilde{\mathbf{k}}_{I J}(Q, T) R_{J}(A) \tag{29}
\end{equation*}
$$

Note that $\tilde{\mathrm{H}}_{I}$ depends only on the $q_{i j}$ and $t_{i j}$ with $i+j \leq n$.

$5.2(Q, T)$-Kostka matrices

The factorization property of the determinant of the (Q, T)-Kostka matrix, which is valid for the usual $\underset{\sim}{\text { Macdonald polynomials as well as for the noncommutative analogues of [8] and [1] still holds since the }}$ $\tilde{\mathrm{H}}_{I}$ are specializations of the P_{I}.
Theorem 5.2 Let n be an integer. Then

$$
\begin{equation*}
\operatorname{det} \mathcal{K}_{n}=\prod_{i+j \leq n}\left(q_{i j}-t_{i j}\right)^{e(i, j)} \tag{30}
\end{equation*}
$$

where $e(i, j)=\binom{i+j-2}{i-1} 2^{n-i-j}$.

5.3 Specializations

For appropriate specializations, we recover (up to indexation) the Bergeron-Zabrocki polynomials $\tilde{\mathrm{H}}_{I}^{B Z}$ of [1] and the multiparameter Macdonald functions $\tilde{\mathrm{H}}_{I}^{H}{ }^{L T}$ of [8]:
Proposition 5.3 Let $\left(q_{i}\right),\left(t_{i}\right), i \geq 1$ be two sequences of indeterminates. For a composition I of n,
(i) Let ν be the anti-involution of Sym defined by $\nu\left(S_{n}\right)=S_{n}$. Under the specialization $q_{i j}=q_{i+j-1}$, $t_{i j}=t_{n+1-i-j}, \tilde{\mathrm{H}}_{I}(Q, T)$ becomes a multiparameter version of $i \nu\left(\tilde{\mathrm{H}}_{I}^{B Z}\right)$, to which it reduces under the further specialization $q_{i}=q^{i}$ and $t_{i}=t^{i}$.
(ii) Under the specialization $q_{i j}=q_{j}, t_{i j}=t_{i}, \tilde{\mathrm{H}}_{I}(Q, T)$ reduces to $\tilde{\mathrm{H}}_{I}^{H L T}$.

5.4 The quasi-symmetric side

Families of (Q, T)-quasi-symmetric functions can now be defined by duality by specialization of the $\left(Q_{I}\right)$ defined in the general case. The dual basis of $\left(\tilde{\mathrm{H}}_{J}\right)$ in QSym will be denoted by $\left(\tilde{\mathrm{G}}_{I}\right)$. We have

$$
\begin{equation*}
\tilde{\mathrm{G}}_{I}(X ; Q, T)=\sum_{J} \tilde{\mathbf{g}}_{I J}(q, t) F_{J}(X) \tag{31}
\end{equation*}
$$

where the coefficients are given by the transposed inverse of the Kostka matrix: $\left(\tilde{\mathbf{g}}_{I J}\right)={ }^{t}\left(\tilde{\mathbf{k}}_{I J}\right)^{-1}$.
Let $Z^{\prime}(I)(Q, T)=Z(I)(T, Q)=Z\left(\bar{I}^{\sim}\right)(Q, T)$. Then, thanks to Proposition 4.3 and to the fact that changing the last bit of a binary word amounts to change a q into a t, we have

Proposition 5.4 The inverse of the (Q, T)-Kostka matrix is given by

$$
\begin{equation*}
\left(\mathcal{K}_{n}^{-1}\right)_{I J}=(-1)^{\ell(I)-1} \prod_{d \in \operatorname{Des}(\bar{I} \sim)} z_{d}^{\prime}(J) \prod_{p=1}^{n-1} \frac{1}{z_{p}(J)-z_{p}^{\prime}(J)} \tag{32}
\end{equation*}
$$

6 Multivariate BZ polynomials

In this section, we restrict our attention to the multiparameter version of the Bergeron-Zabrocki polynomials, obtained by setting $q_{i j}=q_{i+j-1}$ and $t_{i j}=t_{n+1-i-j}$ in degree n.

6.1 Multivariate BZ polynomials

As in the case of the two matrices of parameters, Q and T, one can deduce the product in the \tilde{H} basis by some sort of specialization of the general case. However, since $t_{i j}$ specializes to another t where n appears, one has to be a little more cautious to get the correct answer.
Theorem 6.1 Let I and J be two compositions of respective sizes p and r. Let us denote by $K=I . \bar{J}^{\sim}$ and $n=|K|=p+r$. Then

$$
\begin{equation*}
\tilde{\mathrm{H}}_{I} \tilde{\mathrm{H}}_{J}=\frac{(-1)^{\ell(I)+|J|}}{\prod_{k \in \operatorname{Des}(K)}\left(q_{k}-t_{n-k}\right)} \sum_{K^{\prime}} \prod_{k \in \operatorname{Des}(K)}(-1)^{\ell(K)}\left(z_{k}\left(K^{\prime}\right)-z_{k}^{\prime}\left(K^{\prime}\right)\right) \tilde{\mathrm{H}}_{K^{\prime}} \tag{33}
\end{equation*}
$$

where the sum is computed as follows. Let I^{\prime} and J^{\prime} be the compositions such that $\left|I^{\prime}\right|=|I|$ and either $K^{\prime}=I^{\prime} \cdot J^{\prime}$, or $K^{\prime}=I^{\prime} \triangleright J^{\prime}$. If I^{\prime} is not coarser than I or if J^{\prime} is not finer than J, then $\tilde{\mathrm{H}}\left(K^{\prime}\right)$ does have coefficient 0 . Otherwise, $z_{k}\left(K^{\prime}\right)=q_{k}$ if k is a descent of K^{\prime} and t_{n-k} otherwise. Finally, $z_{k}^{\prime}\left(K^{\prime}\right)$ does not depend on K^{\prime} and is $(Z(I), 1, Z(J))$.

6.2 The ∇ operator

The ∇ operator of [1] can be extended by

$$
\begin{equation*}
\nabla \tilde{\mathrm{H}}_{I}=\left(\prod_{d=1}^{n-1} z_{d}(I)\right) \tilde{\mathrm{H}}_{I} \tag{34}
\end{equation*}
$$

Then,
Proposition 6.2 The action of ∇ on the ribbon basis is given by

$$
\begin{equation*}
\nabla R_{I}=(-1)^{|I|+\ell(I)} \prod_{d \in \operatorname{Des}\left(I^{\sim}\right)} q_{d} \prod_{d \in \operatorname{Des}(\bar{I} \sim)} t_{d} \sum_{J \geq \bar{I}^{\sim} \sim i \in \operatorname{Des}(I) \cap \operatorname{Des}(J)} \prod_{i}\left(t_{i}+q_{n-i}\right) R_{J} \tag{35}
\end{equation*}
$$

Note also that if $I=\left(1^{n}\right)$, one has

$$
\begin{equation*}
\nabla \Lambda_{n}=\sum_{J \vDash n} \prod_{j \in \operatorname{Des}(J)}\left(q_{j}+t_{n-j}\right) R_{J}=\sum_{J \vDash n} \prod_{j \notin \operatorname{Des}(J)}\left(q_{j}+t_{n-j}-1\right) \Lambda^{J} \tag{36}
\end{equation*}
$$

As a positive sum of ribbons, this is the multigraded characteristic of a projective module of the 0 Hecke algebra. Its dimension is the number of packed words of length n (called preference functions in
[1]). Let us recall that a packed word is a word w over $\{1,2, \ldots\}$ so that if $i>1$ appears in w, then $i-1$ also appears in w. The set of all packed words of size n is denoted by PW_{n}.

Then the multigraded dimension of the previous module is

$$
\begin{equation*}
W_{n}(\mathbf{q}, \mathbf{t})=\left\langle\nabla \Lambda_{n}, F_{1}^{n}\right\rangle=\sum_{w \in \mathrm{PW}_{n}} \phi(w) \tag{37}
\end{equation*}
$$

where the statistic $\phi(w)$ is obtained as follows.
Let $\sigma_{w}=\overline{\operatorname{std}(\bar{w})}$, where \bar{w} denotes the mirror image of w. Then

$$
\begin{equation*}
\phi(w)=\prod_{i \in \operatorname{Des}\left(\sigma_{w}^{-1}\right)} x_{i} \tag{38}
\end{equation*}
$$

where $x_{i}=q_{i}$ if $w_{i}^{\uparrow}=w_{i+1}^{\uparrow}$ and $x_{i}=t_{n-i}$ otherwise, where w^{\uparrow} is the nondecreasing reordering of w.
For example, with $w=22135411, \sigma_{w}=54368721, w^{\uparrow}=11122345$, the recoils of σ_{w} are $1,2,3,4$, 7, and $\phi(w)=q_{1} q_{2} t_{5} q_{4} t_{1}$.

Theorem 6.3 Denote by d_{I} the number of permutations σ with descent composition $C(\sigma)=I$. Then, for any composition I of n,

$$
\begin{equation*}
\nabla R_{I}=(-1)^{|I|+\ell(I)} \theta(\sigma) \sum_{w \in \mathrm{PW}_{n} ; \operatorname{ev}(w) \leq I} \frac{R_{C\left(\sigma_{w}^{-1}\right)}}{d_{C\left(\sigma_{w}^{-1}\right)}} \tag{39}
\end{equation*}
$$

where σ is any permutation such that $C\left(\sigma^{-1}\right)=\bar{I}^{\sim}$, and

$$
\begin{equation*}
\theta(\sigma)=\prod_{d \in \operatorname{Des}(\bar{I} \sim)} t_{d} \tag{40}
\end{equation*}
$$

The behaviour or the multiparameter BZ polynomials with respect to the scalar product

$$
\begin{equation*}
\left[R_{I}, R_{J}\right]:=(-1)^{|I|+\ell(I)} \delta_{I, \bar{J} \sim} \tag{41}
\end{equation*}
$$

is the natural generalization of [1, Prop. 1.7]:

$$
\begin{equation*}
\left[\tilde{\mathrm{H}}_{I}, \tilde{\mathrm{H}}_{J}\right]=(-1)^{|I|+\ell(I)} \delta_{I, \bar{J} \sim} \prod_{i=1}^{n-1}\left(q_{i}-t_{n-i}\right) \tag{42}
\end{equation*}
$$

7 Quasideterminantal bases

7.1 Quasideterminants of almost triangular matrices

Quasideterminants [4] are noncommutative analogs of the ratio of a determinant by one of its principal minors. Thus, the quasideterminants of a generic matrix are not polynomials, but complicated rational expressions living in the free field generated by the coefficients. However, for almost triangular matrices,
i.e., such that $a_{i j}=0$ for $i>j+1$, all quasideterminants are polynomials, with a simple explicit expression. We shall only need the formula (see [3], Prop.2.6):

$$
\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & \overline{a_{1 n}} \tag{43}\\
-1 & a_{22} & a_{23} & \ldots & a_{2 n} \\
0 & -1 & a_{33} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{n-1 n} \\
0 & \ldots & 0 & -1 & a_{n n}
\end{array}\right|=a_{1 n}+\sum_{1 \leq j_{1}<\cdots<j_{k}<n} a_{1 j_{1}} a_{j_{1}+1 j_{2}} a_{j_{2}+1 j_{3}} \ldots a_{j_{k}+1 n} .
$$

Recall that the quasideterminant $|A|_{p q}$ is invariant by scaling the rows of index different from p and the columns of index diffrerent from q. It is homogeneous of degree 1 with respect to row p and column q. Also, the quasideterminant is invariant under permutations of rows and columns.

The quasideterminant (43) coincides with the row-ordered expansion of an ordinary determinant

$$
\begin{equation*}
\operatorname{rdet}(A):=\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)} \tag{44}
\end{equation*}
$$

which will be denoted as an ordinary determinant in the sequel.

7.2 Quasideterminantal bases of Sym

Many interesting families of noncommutative symmetric functions can be expressed as quasi-determinants of the form

$$
H(W, G)=\left|\begin{array}{ccccc}
w_{11} G_{1} & w_{12} G_{2} & \ldots & w_{1 n-1} G_{n-1} & w_{1 n} G_{n} \tag{45}\\
w_{21} & w_{22} G_{1} & \ldots & w_{2 n-1} G_{n-2} & w_{2 n} G_{n-1} \\
0 & w_{32} & \ldots & w_{3 n-3} G_{n-3} & w_{3 n} G_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & w_{n n-1} & w_{n n} G_{1}
\end{array}\right|
$$

(or of the transposed form), where G_{k} is some sequence of free generators of Sym, and W an almosttriangular $\left(w_{i j}=0\right.$ for $\left.i>j+1\right)$ scalar matrix. For example, S_{n} over the Λ^{I} and the Ψ^{I} (see [3, (37)-(41)]), or over the Θ^{I}, where $\Theta_{n}(q)=(1-q)^{-1} S_{n}((1-q) A)$ (see [10, Eq. (78)]). These examples illustrate relations between sequences of free generators. Quasi-determinantal expressions for some linear bases can be recast in this form as well. For example, the formula for ribbons [3, (50)] can be rewritten as follows. Let U and V be the $n \times n$ almost-triangular matrices

$$
U=\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \tag{46}\\
-1 & -1 & \ldots & -1 & -1 \\
0 & -1 & \ldots & -1 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & -1
\end{array}\right] \quad V=\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
-1 & 0 & \ldots & 0 & 0 \\
0 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & 0
\end{array}\right]
$$

Given the pair (U, V), define, for each composition I of n, a matrix $W(I)$ by

$$
w_{i j}(I)= \begin{cases}u_{i j} & \text { if } i-1 \in \operatorname{Des}(I) \tag{47}\\ v_{i j} & \text { otherwise }\end{cases}
$$

and set

$$
\begin{equation*}
H_{I}(U, V ; A):=H(W(I), S(A)) . \tag{48}
\end{equation*}
$$

Then,

$$
\begin{equation*}
(-1)^{\ell(I)-1} R_{I}=H_{I}(U, V) . \tag{49}
\end{equation*}
$$

Indeed, $H_{I}(U, V ; A)$ is obtained by substituting in (43)

$$
a_{j_{p}+1, j_{p+1}}= \begin{cases}-S_{j_{p+1}-j_{p}} & \text { if } j_{p} \in \operatorname{Des}(I) \tag{50}\\ 0 & \text { otherwise }\end{cases}
$$

This yields

$$
\begin{align*}
& S_{n}+\sum_{k} \sum_{\left\{j_{1}<\cdots<j_{k}\right\} \subseteq \operatorname{Des}(I)} S_{j_{1}}\left(-S_{j_{2}-j_{1}}\right) \ldots\left(-S_{n-j_{k}}\right) \\
& =\sum_{\operatorname{Des}(K) \subseteq \operatorname{Des}(I)}(-1)^{\ell(K)-1} S^{K}=(-1)^{\ell(I)-1} R_{I} . \tag{51}
\end{align*}
$$

For a generic pair of almost-triangular matrices (U, V), the H_{I} form a basis of $\mathbf{S y m}_{n}$. Without loss of generality, we may assume that $u_{1 j}=v_{1 j}=1$ for all j. Then, the transition matrix M expressing the H_{I} on the S^{J} where $J=\left(j_{1}, \ldots, j_{p}\right)$ satisfies:

$$
\begin{equation*}
M_{J, I}:=x_{1 j_{1}-1} x_{j_{1} j_{2}-1} \ldots x_{j_{p} n} \tag{52}
\end{equation*}
$$

where $x_{i j}=u_{i j}$ if $i-1$ is not a descent of I and $v_{i j}$ otherwise.
As we shall sometimes need different normalizations, we aslo define for arbitrary almost triangular matrices U, V

$$
H^{\prime}(W, G)=\operatorname{rdet}\left[\begin{array}{ccccc}
w_{11} G_{1} & w_{12} G_{2} & \ldots & w_{1 n-1} G_{n-1} & w_{1 n} G_{n} \tag{53}\\
w_{21} & w_{22} G_{1} & \ldots & w_{2 n-1} G_{n-2} & w_{2 n} G_{n-1} \\
0 & w_{32} & \ldots & w_{3 n-3} G_{n-3} & w_{3 n} G_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & w_{n n-1} & w_{n n} G_{1}
\end{array}\right]
$$

and

$$
\begin{equation*}
H_{I}^{\prime}(U, V)=H^{\prime}(W(I), S(A)) . \tag{54}
\end{equation*}
$$

7.3 Expansion on the basis $\left(S^{I}\right)$

For a composition $I=\left(i_{1}, \ldots, i_{r}\right)$ of n, let I^{\sharp} be the integer vector of length n obtained by replacing each entry k of I by the sequence $(k, 0, \ldots, 0)(k-1$ zeros):

$$
\begin{equation*}
I^{\sharp}=\left(i_{1} 0^{i_{1}-1} i_{2} 0^{i_{2}-1} \ldots i_{r} 0^{i_{r}-1}\right) . \tag{55}
\end{equation*}
$$

Proposition 7.1 The expansion of $H^{\prime}(W, S)$ on the S-basis is given by

$$
\begin{equation*}
H^{\prime}(W, S)=\sum_{I F n} \varepsilon\left(\sigma_{I}\right) w_{1 \sigma_{I}(1)} \cdots w_{n \sigma_{I}(n)} S^{I} . \tag{56}
\end{equation*}
$$

7.4 Expansion of the basis $\left(R_{I}\right)$

Proposition 7.2 For $I=\left(i_{1}, \ldots, i_{r}\right)$ be a composition of n, denote by W_{I} the product of diagonal minors of the matrix W taken over the first i_{1} rows and columns, then the next i_{2} ones and so on. Then,

$$
\begin{equation*}
H^{\prime}(W, S)=\sum_{I \neq n} W_{I} R_{I} \tag{57}
\end{equation*}
$$

7.5 Examples

7.5.1 A family with factoring coefficients

Theorem 7.3 Let U and V be defined by

$$
\begin{gather*}
u_{i j}= \begin{cases}x^{j}-y^{j} & \text { if } i=1, \\
a q_{i-1} x^{j-i+1}-y^{j-i+1} & \text { if } 1<i<j+2, \\
0 & \text { otherwise },\end{cases} \tag{58}\\
v_{i j}= \begin{cases}x^{j}-y^{j} & \text { if } i=1, \\
x^{j-i+1}-b u_{n+1-i} y^{j-i+1} & \text { if } 1<i<j+2, \\
0 & \text { otherwise } .\end{cases} \tag{59}
\end{gather*}
$$

Then the coefficients W_{J} of the expansion of $H_{I}^{\prime}(U, V)$ on the ribbon basis all factor as products of binomials.

The formula for the coefficient of R_{n} is simple enough: if one orders the factors of $\operatorname{det}(U)$ and $\operatorname{det}(V)$ as

$$
\begin{equation*}
Z_{n}=\left(x-a q_{1} y, x-a q_{2} y, \ldots, x-a q_{n-1} y\right) \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{n}^{\prime}=\left(y-b u_{n-1} x, y-b u_{n-2} x, \ldots, y-b u_{1} x\right) \tag{61}
\end{equation*}
$$

then, the coefficient of R_{n} in $H_{I}^{\prime}(U, V)$ is

$$
\begin{equation*}
(x-y) \prod_{d \in \operatorname{Des}(I)} z_{d}^{\prime} \prod_{e \notin \operatorname{Des}(I)} z_{e} \tag{62}
\end{equation*}
$$

A more careful analysis allows one to compute directly the coefficient of R_{J} in H_{I}^{\prime}.
For example,

$$
\begin{align*}
\frac{H_{3}^{\prime}(U, V)}{(x-y)}= & \left(x-a q_{1} y\right)\left(x-a q_{2} y\right) R_{3}+\left(x-a q_{1} y\right)\left(a q_{2} x-y\right) R_{21} \tag{63}\\
& +a(x-y)\left(q_{1} x-q_{2} y\right) R_{12}+\left(a q_{1} x-y\right)\left(a q_{2} x-y\right) R_{111} \\
\frac{H_{21}^{\prime}(U, V)}{(x-y)}= & \left(x-a q_{1} y\right)\left(b u_{1} x-y\right) R_{3}+\left(x-a q_{1} y\right)\left(x-b u_{1} y\right) R_{21} \tag{64}\\
& +\left(a b q_{1} u_{1} x-y\right)(x-y) R_{12}+\left(a q_{1} x-y\right)\left(x-b u_{1} y\right) R_{111}
\end{align*}
$$

7.5.2 An analogue of the $(1-t) /(1-q)$ transform

Recall that for commutative symmetric functions, the $(1-t) /(1-q)$ transform is defined in terms of the power-sums by

$$
\begin{equation*}
p_{n}\left(\frac{1-t}{1-q} X\right)=\frac{1-t^{n}}{1-q^{n}} p_{n}(X) \tag{65}
\end{equation*}
$$

With the specialization $x=1, y=t, q_{i}=q^{i}, u_{i}=1, a=b=1$, one obtains a basis such that for a hook composition $I=\left(n-k, 1^{k}\right)$, the commutative image of $H_{I}^{\prime}(U, V)$ becomes the $(1-t) /(1-q)$ transform of the Schur function $s_{n-k, 1^{k}}$.

7.5.3 An analogue of the Macdonald P-basis

With the specialization $x=1, y=t, q_{i}=q^{i}, u_{i}=t^{i}, a=b=1$, one obtains an analogue of the Macdonald P-basis, in the sense that for hook compositions $I=\left(n-k, 1^{k}\right)$, the commutative image of H_{I}^{\prime} is proportional to the Macdonald polynomial $P_{n-k, 1^{k}}(q, t ; X)$.

References

[1] N. BERGERON and M. ZABrocki, q and q, t-analogs of non-commutative symmetric functions, Discrete Math. 298 (2005), no. 1-3, 79-103.
[2] G. Duchamp, F. Hivert and J.-Y. Thibon, Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras Inter. J. of Alg. and Comput. 12 (2002), 671-717.
[3] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh and J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), 218-348.
[4] I. Gelfand and V. Retakh, Determinants of matrices over noncommutative rings, Funct. Anal. Appl., 25 (1991), $91-102$.
[5] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Contemp. Math. 34 (1984), 289-301.
[6] M. HAIMAN, Macdonald polynomials and geometry, in New perspectives in algebraic combinatorics, MSRI Publications 38 (1999), 207-254.
[7] F. Hivert, Hecke algebras, difference operators, and quasi-symmetric functions, Adv. Math. 155 (2000), 181-238.
[8] F. Hivert, A. Lascoux and J.-Y. Thibon, Noncommutative symmetric functions with two and more parameters, preprint arXiv: math.CO/0106191.
[9] F. Hivert, A. Lascoux and J.-Y. Thibon, Macdonald polynomials with two vector parameters, unpublished notes, 2001.
[10] D. Krob, B. Leclerc and J.-Y. Thibon, Noncommutative symmetric functions II: Transformations of alphabets, Internat. J. Alg. Comp. 7 (1997), 181-264.
[11] A. Lascoux, J.-C. Novelli and J.-Y. Thibon, Noncommutative symmetric functions with matrix parameters, arXiv:1110.3209.
[12] I.G. MACDONALD, Symmetric functions and Hall polynomials, 2nd edition, Oxford, 1995.
[13] J.-C. Novelli, J.-Y. Thibon and L.K. Williams, Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux, Advances in Math. 224 (2010), 1311-1348.
[14] L. TevLin, Noncommutative Symmetric Hall-Littlewood Polynomials, Proc. FPSAC 2011, DMTCS Proc. AO 2011, 915926.

