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A simple formula for the series of bipartite and
quasi-bipartite maps with boundaries

Gwendal Collet and Éric Fusy†

LIX, École Polytechnique, 91128 Palaiseau, France

Abstract. We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps
with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to
appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process
(reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree.

Résumé. Nous obtenons une formule très simple pour la série génératrice des cartes biparties ayant des bords (trous)
de tailles fixées, généralisant certaines expressions obtenues par Eynard dans un livre à paraı̂tre. Nous obtenons la
formule à partir d’une bijection due à Bouttier, Di Francesco et Guitter, combinée avec un processus (dans l’esprit
d’une construction due à Pitman) pour agréger les composantes connexes d’une forêt en un unique arbre.
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1 Introduction
Planar maps, i.e., connected graphs embedded on the sphere, have attracted a lot of attention since the sem-
inal work of [Tutte(1962), Tutte(1963)]. By considering rooted maps (i.e., maps where a corner is marked)
and using a recursive approach, Tutte found beautiful counting formulas for many families of maps (bi-
partite, triangulations,...). Several features occur recurrently (see [Bousquet-Mélou and Jehanne(2005)]
for a unified treatment): the generating function y = y(x) is typically algebraic, often lagrangean (i.e.,
there is a parametrization as {y = Q1(t), x = Q2(t)}, whereQ1(.) andQ2(.) are explicit rational expres-
sions), yielding simple (binomial-like) formulas for the counting coefficients cn, and the asymptotics of
the coefficients is in cγnn−5/2 for some constants c > 0 and γ > 1. In this article we focus on bipartite
maps (all faces have even degree) and on quasi-bipartite maps (all faces have even degree except for two,
which have odd degree). One of the first counting results obtained by Tutte is a strikingly simple formula
(called formula of slicings) for the number A[`1, . . . , `r] of maps with r numbered faces f1, . . . , fr of
respective degrees `1, . . . , `r, each face having a marked corner (for simple parity reasons the number of
odd `i must be even). Solving a technically involved recurrence satisfied by these coefficients, he proved
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in [Tutte(1962)] that when zero or two of the `i are odd (bipartite and quasi-bipartite case, respectively),
then:

A[`1, . . . , `r] =
(e− 1)!

v!

r∏
i=1

α(`i), with α(`) :=
`!

b`/2c!b(`− 1)/2c!
, (1)

where e =
∑r

i=1 `i/2 and v = e − r + 2 are the numbers of edges and vertices in such maps. The
formula was recovered in [Cori(1975), Cori(1976)] (using a certain encoding procedure for planar maps);
and the formula in the bipartite case was rediscovered bijectively in [Schaeffer(1997)], based on a cor-
respondence with so-called blossoming trees. Alternatively one can use a more recent bijection given
in [Bouttier et al.(2004) ] (based on a correspondence with so-called mobiles) which itself extends earlier
constructions in [Cori and Vauquelin(1981)] and [Schaeffer(1998), Sec. 6.1] for quadrangulations. The
bijection with mobiles yields the following: if we denote by R = R(t) = R(t;x1, x2, . . .) the generating
function specified by

R = t+
∑
i≥1

xi

(
2i− 1

i

)
Ri. (2)

and denote by M(t) = M(t;x1, x2, . . .) the generating function of rooted bipartite maps, where t marks
the number of vertices and xi marks the number of faces of degree 2i for i ≥ 1, then M ′(t) = R(t).
And one easily recovers (1) in the bipartite case by an application of the Lagrange inversion formula to
extract the coefficients of R(t). With a little work (to be detailed in Section 4), the formula (1) in the
quasi-bipartite case can be reccovered as well.

As we can see, maps might satisfy beautiful counting formulas, regarding counting coefficients (i).
Regarding generating functions, formulas can be very nice and compact as well. In a book to be pub-
lished, [Eynard(2011)] obtains general equations satisfied by the generating function of maps of arbitrary
genus and with several marked faces, which we will call boundary-faces (or shortly boundaries). They
can be easily specialized to certain families of maps and then solved by residue calculations. For example,
he obtains formulae for the (multivariate) generating functions of bipartite and quasi-bipartite maps with
two or three boundaries of arbitrary lengths `1, `2, `3 (in the quasi-bipartite case two of these lengths are
odd), where t marks the number of vertices and xi marks the number of non-boundary faces of degree 2i:

G`1,`2 = γ`1+`2

b`2/2c∑
j=0

(`2 − 2j)
`1!`2!

j!( `1−`22 + j)!( `1+`2
2 − j)!(`2 − j)!

, (3)

G`1,`2,`3 =
γ`1+`2+`3−1

y′(1)

(
3∏

i=1

`i!

b`i/2c! b(`i − 1)/2c!

)
. (4)

In these formulae the series γ and y′(1) are closely related to R(t), precisely γ2 = R(t) and one can
check that y′(1) = γ/R′(t).

In this article, we obtain new formulae which generalize Eynard’s ones to any number of boundaries,
both in the bipartite and the quasi-bipartite case. For r ≥ 1 and `1, . . . , `r positive integers, an even
map of type (`1, . . . , `r) is a map with r (numbered) marked faces —called boundary-faces— f1, . . . , fr
of degrees `1, . . . , `r, each boundary-face having a marked corner, and with all the other faces of even

(i) We also mention the work of [Krikun(2007)] where a beautiful formula is proved for the number of triangulations with multiple
boundaries of prescribed lengths, a bijective proof of which is still to be found.
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degree. (Note that there is an even number of odd `i by a simple parity argument.) Let G`1,...,`r :=
G`1,...,`r (t;x1, x2, . . .) be the corresponding generating function where t marks the number of vertices
and xi marks the number of non-boundary faces of degree 2i. Our main result is:

Theorem 1.1 When zero or two of the `i are odd, then the following formula holds:

G`1,...,`r =
( r∏

i=1

α(`i)
)
· 1
s
· d

r−2

dtr−2
Rs, with α(`) =

`!

b `2c!b
`−1
2 c!

, s =
`1 + · · ·+ `r

2
, (5)

where R is given by (2).

Our formula covers all parity cases for the `i when r ≤ 3. For r = 1, the formula reads G2a
′ =(

2a
a

)
Ra, which is a direct consequence of the bijection with mobiles. For r = 2 the formula reads

G`1,`2 = α(`1)α(`2)R
s/s (which simplifies the constant in (3)). And for r = 3 the formula reads

G`1,`2,`3 = α(`1)α(`2)α(`3)R
′Rs−1. Note that (5) also “contains” the formula of slicings (1), by noticing

that A[`1, . . . , `r] equals the evaluation of G`1,...,`r at {t = 1;x1 = 0, x2 = 0, . . .}, which equals

(
∏r

i=1 α(`i)
)
· (s−1)!
(s−r+2)! . Hence, (5) can be seen as an “interpolation” between the two formulas of Eynard

given above and Tutte’s formula of slicings. In addition, (5) has the nice feature that the expression of
G`1,...,`r splits into two factors: (i) a constant factor which itself is a product of independent contributions
from every boundary, (ii) a series-factor that just depends on the number of boundaries and the total length
of the boundaries.

Even though the coefficients ofG`1,...,`r have simple binomial-like expressions (easy to obtain from (1)),
it does not explain why at the level of generating functions the expression (5) is so simple (and it would
not be obvious to guess (5) by just looking at (1)). Relying on the bijection with mobiles (recalled
in Section 2), we give a transparent proof of (5). In the bipartite case, our construction (described in
Section 3) starts from a forest of mobiles with some marked vertices, and then we aggregate the con-
nected components so as to obtain a single mobile with some marked black vertices of fixed degrees
(these black vertices correspond to the boundary-faces). The idea of aggregating connected compo-
nents as we do is reminiscent of a construction in [Pitman(1999)] giving for instance a very simple proof
(see [Aigner and Ziegler(2004), Chap. 26]) that the number of Cayley trees with n nodes is nn−2. Then
we show in Section 4 that the formula in the quasi-bipartite case can be obtained by a reduction to the
bipartite case. It would be interesting as a next step (the present paper just looks at the cases where at most
two of the `i are odd) to search for a simple formula for G`1,...,`r when four or more of the `i are odd (as
noted in [Tutte(1962)], the coefficients do not seem to be that simple, they have large prime factors).

2 Bijection between vertex-pointed maps and mobiles
We recall here a well-known bijection due to [Bouttier et al.(2004) ] between vertex-pointed planar maps
and a certain family of decorated trees called mobiles. We actually follow a slight reformulation of the
bijection given in [Bernardi and Fusy(2011)]. A mobile is a plane tree (i.e., a planar map with one face)
with vertices either black or white, with dangling half-edges —called buds— at black vertices, such that
there is no white-white edge, and such that each black vertex has as many buds as white neighbours.The
degree of a black vertex v is the total number of incident half-edges (including the buds) incident to v.
Starting from a planar map G with a pointed vertex v0, and where the vertices of G are considered as
white, one obtains a mobile M as follows (see Figure 1):
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(a) (b) (c)

Fig. 1: (a) A vertex-pointed map endowed with the geodesic orientation (with respect to the marked vertex). (b) The
local rule is applied to each edge of the map. (c) The resulting mobile.

• Endow G with its geodesic orientation from v0 (i.e., an edge {v, v′} is oriented from v to v′ if v′ is
one unit further than v from v0, and is left unoriented if v and v′ are at the same distance from v0).

• Put a new black vertex in each face of G.

• Apply the following local rule to each edge (oriented or not) of G:

• Delete the edges of G and the vertex v0.

Theorem 2.1 ([Bouttier et al.(2004) ]) The above construction is a bijection between vertex-pointed maps
and mobiles. Each non-root vertex in the map corresponds to a white vertex in the mobile. Each face of
degree i in the map corresponds to a black vertex of degree i in the mobile.

A mobile is called bipartite when all black vertices have even degree, and is called quasi-bipartite
when all black vertices have even degree except for two which have odd degree. Note that bipartite (resp.
quasi-bipartite) mobiles correspond to bipartite (resp. quasi-bipartite) vertex-pointed maps.

Claim 2.1 A mobile is bipartite iff it has no black-black edge. A mobile is quasi-bipartite iff the set of
black-black edges forms a non-empty path whose extremities are the two black vertices of odd degrees.

Proof: Let T be a mobile and F the forest formed by the black vertices and black-black edges of T . Note
that for each black vertex of T , the degree and the number of incident black-black edges have same parity.
Hence if T is bipartite, F has only vertices of even degree, so F is empty; while if T is quasi-bipartite, F
has two vertices of odd degree, so the only possibility is that the edges of F form a non-empty path. 2

A bipartite mobile is called rooted if it has a marked corner at a white vertex. LetR := R(t;x1, x2, . . .)
be the generating function of rooted bipartite mobiles, where t marks the number of white vertices and
xi marks the number of black vertices of degree 2i for i ≥ 1. As shown in [Bouttier et al.(2004) ], a
decomposition at the root ensures thatR is given by Equation (2); indeed if we denote by S the generating
function of bipartite mobiles rooted at a white leaf, then R = t+RS and S =

∑
i≥1 xi

(
2i−1

i

)
Ri−1.
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Fig. 2: From a bipartite mobile with 5 marked black vertices to a forest with 5 connected components and 4 marked
white vertices {w1, w2, w3, w4}: (a) removing the buds on marked black vertices, (b) cutting the mobile at a marked
black vertex into two connected components (5 − 1 choices) and a marked white vertex w1, (c) repeating the same
operation 3 more time to obtain 5 connected components and 4 marked white vertices.

3 Bipartite case
In this section, we consider the two following families:

• M2a1,...,2ar
is the family of bipartite mobiles with r marked black vertices v1, . . . , vr of respective

degrees 2a1, . . . , 2ar, the mobile being rooted at a bud incident to one of the marked vertices,

• Fs is the family of forests made of s :=
∑r

i=1 ai rooted bipartite mobiles, and where additionnally
r − 1 white vertices w1, . . . , wr−1 are marked.

We also define the constant c =
∏r

i=1

(
2ai−1

ai

)
.

Proposition 3.1 There is an (r− 1)!-to-(r− 1)! correspondence between the familyM2a1,...,2ar and the
family c · Fs. If γ ∈ M2a1,...,2ar

corresponds to γ′ ∈ Fs, then each white vertex in γ corresponds to a
white vertex in γ′, and each black vertex of degree 2i in γ corresponds to a black vertex of degree 2i in γ′.

Proof: We will describe the correspondence in both ways (see Figure 2). First, one can go from the forest
to the mobile through the following operations:



612 Gwendal Collet and Éric Fusy

1. Group the first a1 mobiles and bind them to a new black vertex b1, then bind the next a2 mobiles to
a new black vertex b2, and so on, to get a forest with r connected components rooted at b1, . . . , br.

2. The r−1 marked white vertices w1, . . . , wr−1 are ordered, pick one of the r−1 components which
do not contain wr−1. Bind this component to wr−1 by merging wr−1 with the rightmost white
neighbour of bi. Repeat the operation for each wr−i to reduce the number of components to one
(r−i possibilities in the choice of the connected component at the ith step), thus getting a decorated
bipartite tree rooted at a corner incident to some bj .

3. For i 6= j, decorate with ai buds the black vertex bi, yielding a factor of
(
2ai−1

ai

)
.

4. Replace now the root corner at bj by a bud which will be the root of the output mobile, and decorate
bj with aj − 1 buds, yielding another factor

(
2aj−1

aj

)
.

Conversely, one can go from the mobile to the forest through the following operations:

1. Remove every bud on marked black vertices, and replace the root bud by a root corner, yielding a
factor of 1/

∏r
i=1

(
2ai−1

ai

)
.

2. Pick one marked black vertex bk, but the root, and separate it as in Figure 2 (transition from (a) to
(b)), this creates a new connected component, rooted at bk.

3. Repeat this operation, choosing at each step (r− i possibilites at the ith step) a marked black vertex
that is not the root in its connected components, until one gets r connected components, each being
rooted at one of the marked black vertices {b1, . . . , br}.

4. Remove all marked black vertices and their incident edges; this yields a forest of s rooted bipartite
mobiles.

In both ways, there are
∏r−1

i=1 (r− i) = (r− 1)! possibilities, that is, the correspondence is (r− 1)!-to-
(r − 1)!. 2

As a corollary we obtain the formula of Theorem 1.1 in the bipartite case:

Corollary 3.1 For r ≥ 1 and a1, . . . , ar positive integers, the generating function G2a1,...,2ar
satis-

fies (5), i.e.,

G2a1,...,2ar =

(
r∏

i=1

(2ai)!

ai!(ai − 1)!

)
· 1
s
· d

r−2

dtr−2
Rs, where s =

r∑
i=1

ai. (6)

Proof: As mentioned in the introduction, for r = 1 the expression reads G2a
′ =

(
2a
a

)
Ra, which is a

direct consequence of the bijection with mobiles (indeed G2a
′ is the series of mobiles with a marked

black vertex v of degree 2a, with a marked corner incident to v). So we now assume r ≥ 2. Let
T2a1,...,2ar

= T2a1,...,2ar
(t;x1, x2, . . .) be the generating function of bipartite mobiles with r marked

black vertices of degrees 2a1, . . . , 2ar, where t marks the number of white vertices and xi marks the
number of black vertices of degree 2i. Let M2a1,...,2ar = M2a1,...,2ar (t;x1, x2, . . .) be the generating
function ofM2a1,...,2ar

where again t marks the number of white vertices and xi marks the number of
black vertices of degree 2i. By definition ofM2a1,...,2ar

, we have s·T2a1,...,2ar
=M2a1,...,2ar

. Moreover,
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(a) (b)

Fig. 3: (a) A blossoming tree. (b) The corresponding rooted bipartite mobile.

Theorem 2.1 ensures that G2a1,...,2ar
′ = (

∏r
i=1 2ai) · T2a1,...,2ar

, where the multiplicative constant is the
consequence of a corner being marked in every boundary face, and where the derivative (according to t)
is the consequence of a vertex being marked in the bipartite map. Next, Proposition 3.1 yields

M2a1,...,2ar
=
( r∏

i=1

(
2ai − 1

ai

))
· d

r−1

dtr−1
Rs

hence we conclude that

G2a1,...,2ar

′ =
1

s

( r∏
i=1

2ai

(
2ai − 1

ai

))
· d

r−1

dtr−1
Rs,

which, upon integration according to t, gives the claimed formula. 2

4 Quasi-bipartite case
So far we have obtained an expression for the generating function G`1,...,`r when all `i are even. In
general, by definition of even maps of type (`1, . . . , `r), there is an even number of `i of odd degree.
While getting a simple explicit expression in the general case is open, we can get a formula when there
are 2 odd boundaries. We proceed by a reduction to the bipartite case, using so-called blossoming trees
(already considered in [Schaeffer(1997)]) as auxililary structures, see Figure 3(a) for an example.

Definition 4.1 (Blossoming trees) A planted plane tree is a plane tree with a marked leaf; classically it
is drawn in a top-down way; each vertex v (different from the root-leaf) has i (ordered) children, and the
integer i is called the arity of v. Vertices that are not leaves are colored black (so a black vertex means a
vertex that is not a leaf). A blossoming tree is a rooted plane tree where each black vertex v, whose arity
i is positive, carries additionally i− 1 dangling half-edges called buds (leaves carry no bud). The degree
of such a black vertex v is defined to be 2i.
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By a standard decomposition at the root, the generating function T := T (t;x1, x2, . . . ) of blossoming
trees, where t marks the number of non-root leaves and xi marks the number of black vertices of degree
2i, is given by:

T = t+
∑
i≥1

xi

(
2i− 1

i

)
T i. (7)

Claim 4.1 There is a bijection between the family T of blossoming trees and the family R of rooted
bipartite mobiles. For γ ∈ T and γ′ ∈ R the associated rooted bipartite mobile, each non-root leaf of γ
corresponds to a white vertex of γ′, and each black vertex of degree 2i in γ corresponds to a black vertex
of degree 2i in γ′.

Proof: Note that the decomposition-equation (7) satisfied by T is exactly the same as the decomposition-
equation (2) satisfied by R. Hence T = R, and one can easily produce recursively a bijection between
T and R that sends black vertices of degree 2i to black vertices of degree 2i, and sends leaves to white
vertices, for instance Figure 3 shows a blossoming tree and the corresponding rooted bipartite mobile. 2

The bijection between T and R will be used in order to get rid of the black path (between the two
black vertices of odd degrees) which appears in a quasi-bipartite mobile. Note that, if we denote by R′
the family of rooted mobiles with a marked white vertex (which does not contribute to the number of
white vertices), and by T ′ the family of blossoming trees with a marked non-root leaf (which does not
contribute to the number of non-root leaves), then T ′ ' R′.

Let τ be a mobile with two marked black vertices v1, v2. Let P = (e1, . . . , ek) be the path between v1
and v2 in τ . If we untie e1 from v1 and ek from v2, we obtain 3 connected components: the one containing
P is called the middle-part τ ′ of τ ; the edges e1 and ek are called respectively the first end and the second
end of τ ′ in τ . The vertices v1 and v2 are considered as taken away from τ ′, which therefore ends on
edges, not vertices.

LetH be the family of structures that can be obtained as middle-parts of quasi-bipartite mobiles where
v1 and v2 are the two black vertices of odd degree (hence the path between v1 and v2 contains only black
vertices). And let K be the family of structures that can be obtained as middle-parts of bipartite mobiles
with two marked black vertices v1, v2.

Lemma 4.1 We have the following bijections:

H ' T ′ ' R′ K ' R′ ×R

Hence: K ' H×R.
In these bijections each black vertex of degree 2i (resp. each white vertex) in an object on the left-hand

side corresponds to a black vertex of degree 2i (resp. to a white vertex) in the corresponding object on the
right-hand side.

Proof: Note that any τ ∈ H consists of a path P of black vertices, and each vertex of degree 2i on P
carries (outside of P ) i − 1 buds and i − 1 rooted mobiles (in R), as illustrated in Figure 4(b). Let τ ′ be
τ where each rooted mobile attached to P is replaced by the corresponding blossoming tree (using the
isomorphism of Claim 4.1), and where the ends of γ are considered as two marked leaves (respectively
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Fig. 4: middle-parts in the bipartite case (a) and in the quasi-bipartite case (b).

the root-leaf and a marked non-root leaf). We clearly have τ ′ ∈ T ′. Conversely, starting from τ ′ ∈ T ′, let
P be the path between the root-leaf and the non-root marked leaf. Each vertex of degree 2i on P carries
(outside of P ) i − 1 buds and i − 1 blossoming trees. Replacing each blossoming tree attached to P by
the corresponding rooted mobile, and seeing the two marked leaves as the first and second end of P , one
gets a structure inH. So we haveH ' T ′.

The bijection K ' R′ × R is simpler. Indeed, any τ ∈ K can be seen as a rooted mobile γ with a
secondary marked corner at a white vertex (see Figure 4(a)). Let w (resp. w′) be the white vertex at the
root (resp. at the secondary marked corner) and let P be the path between w and w′. Each white vertex on
P can be seen as carrying two rooted mobiles (in R), one on each side of P . Let r, r′ be the two rooted
mobiles attached at w′ (say, r is the one on the left of w′ when looking toward w). If we untie r from the
rest of γ, then w′ now just acts as a marked white vertex in γ, so the pair (γ, r) is inR′×R. The mapping
from (γ, r) ∈ R′ ×R to τ ∈ K processes in the reverse way. We get K ' R′ ×R. 2

Now from Lemma 4.1 we can deduce a reduction from the quasi-bipartite to the bipartite case (in
Lemma 4.2 thereafter, see also Figure 4). Let a1 and a2 be positive integers. Define B2a1,2a2

as the family
of bipartite mobiles with two marked black vertices v1, v2 of respective degrees 2a1, 2a2. Similarly define
Q2a1−1,2a2−1 as the family of quasi-bipartite mobiles with two marked black vertices v1, v2 of respective
degrees 2a1 − 1, 2a2 − 1 (i.e., the marked vertices are the two black vertices of odd degree). For each
mobile γ with two marked black vertices, let φ(γ) be γ where the buds on the two marked black vertices
have been removed. Let B̂2a1,2a2 be the image of the family B2a1,2a2 by φ, and let Q̂2a1−1,2a2−1 be the
image of the family Q2a1−1,2a2−1 by φ.
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Lemma 4.2 For a1, a2 two positive integers:

B̂2a1,2a2
' Q̂2a1−1,2a2+1.

In addition, if γ ∈ B̂2a1,2a2 corresponds to γ′ ∈ Q̂2a1−1,2a2+1, then each non-marked black vertex of
degree 2i (resp. each white vertex) in γ corresponds to a non-marked black vertex of degree 2i (resp. to a
white vertex) in γ′.

Proof: Let γ ∈ Q̂2a1−1,2a2+1, and let τ be the middle-part of γ. We construct γ′ ∈ B̂2a1,2a2
as follows.

Note that v2 has a black neighbour b (along the branch from v2 to v1) and has otherwise a2 white neigh-
bours. Let w be next neighbour after b in counter-clockwise order around v2, and let r be the mobile (in
R) hanging from w. According to Lemma 4.1, the pair (τ, r) corresponds to some τ ′ ∈ K. If we replace
the middle-part τ by τ ′ and take out the edge {v2, w} and the mobile r, we obtain some γ′ ∈ B̂2a1,2a2

.
The inverse process is easy to describe, so we obtain a bijection between Q̂2a1−1,2a2+1 and B̂2a1,2a2 . 2

Lemma 4.2 (in an equivalent form) can also be found in [Cori(1975), Theo.VI p.75]. An even more pre-
cise statement (which keeps track of a certain distance-parameter) is proved in [Chapuy(2009), Prop.7.5].
We have included our own (quite shorter and completely bijective) proof for the sake of completeness.

As a corollary of Lemma 4.2, we obtain the formula of Theorem 1.1 in the quasi-bipartite case, with
the exception of the case where the two odd boundaries are of length 1 (this case will be treated later, in
Lemma 4.3).

Corollary 4.1 For r ≥ 2 and a1, . . . , ar positive integers, the generating functionG2a1−1,2a2+1,2a3,...,2ar

satisfies (5).

Proof: We first consider the case r = 2. Let B̂2a1,2a2
= B̂2a1,2a2

(t;x1, x2, . . .) (resp. B2a1,2a2
=

B2a1,2a2
(t;x1, x2, . . .)) be the generating function of B̂2a1,2a2

(resp. of B2a1,2a2
) where t marks the

number of white vertices and xi marks the number of non-marked black vertices of degree 2i. There are(
2ai−1

ai

)
ways to place the buds at each marked black vertex vi (i ∈ {1, 2}), hence

B2a1,2a2 =

(
2a1 − 1

a1

)(
2a2 − 1

a2

)
B̂2a1,2a2 .

In addition Theorem 2.1 ensures that G2a1,2a2
′ = 2a12a2B2a1,2a2

(the multiplicative factor being due to
the choice of a marked corner in each boundary-face). Hence

G2a1,2a2

′ = 4a1a2

(
2a1 − 1

a1

)(
2a2 − 1

a2

)
B̂2a1,2a2

.

Similarly, if we denote by Q̂2a1−1,2a2+1 = Q̂2a1−1,2a2+1(t;x1, x2, . . .) the generating function of the
family Q̂2a1−1,2a2+1 where tmarks the number of white vertices and xi marks the number of non-marked
black vertices of degree 2i, then we have

G2a1−1,2a2+1
′ = (2a1 − 1)(2a2 + 1)

(
2a1 − 2

a1 − 1

)(
2a2
a2

)
Q̂2a1−1,2a2+1.
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Since B̂2a1,2a2
= Q̂2a1−1,2a2+1 by Lemma 4.2, we get (with the notation α(`) = `!

b`/2c!b(`−1)/2c! ):

α(2a1 − 1) · α(2a2 + 1) ·G2a1,2a2
= α(2a1) · α(2a2) ·G2a1−1,2a2+1.

In a very similar way (since the isomorphism of Lemma 4.2 preserves the degree distribution of non-
marked black vertices), we have for r ≥ 2:

α(2a1 − 1) · α(2a2 + 1) ·G2a1,2a2,2a3,...,2ar = α(2a1) · α(2a2) ·G2a1−1,2a2+1,2a3,...,2ar .

Hence the fact that G2a1−1,2a2+1,2a3,...,2ar
satisfies (5) follows from the fact (already proved in Corol-

lary 3.1) that G2a1,2a2,2a3,...,2ar satisfies (5). 2

It remains to show the fomula when the two odd boundary-faces have length 1. For that case, we have
the following counterpart of Lemma 4.2:

Lemma 4.3 Let B2 be the family of bipartite mobiles with a marked black vertex of degree 2, and let B′2
be the family of objects from B2 where a white vertex is marked. Then

Q1,1 ' B′2.

In addition, if γ ∈ B′2 corresponds to γ′ ∈ Q1,1, then each white vertex of γ corresponds to a white vertex
of γ′, and each non-marked black vertex of degree 2i in γ corresponds to a non-marked black vertex of
degree 2i in γ′.

Proof: A mobile in Q1,1 is completely reduced to its middle-part, so we have

Q1,1 ' H ' T ′ ' R′.

Consider a mobile in R′, i.e., a bipartite mobile where a corner indicent to a white vertex is marked, and
a secondary white vertex is marked. At the marked corner we can attach an edge connected to a black
vertex b of degree 2 (the other incident half-edge of b being a bud). We thus obtain a mobile in B′2, and
the mapping is clearly a bijection. 2

By Lemma 4.3 we have 2G1,1 = G′2, and similarly 2G1,1,2a3,...,2ar
= G2,2a3,...,2ar

′. Hence, again the
fact that G1,1,2a3,...,2ar satisfies (5) follows from the fact that G2,2a3,...,2ar satisfies (5), which has been
shown in Corollary 3.1.
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