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Abstract. We examine the sets of permutations that are sorted by two passes through a stack with a D8 operation
performed in between. From a characterization of these in terms of generalized excluded patterns, we prove two
conjectures on their enumeration, that can be refined with the distribution of some statistics. The results are obtained
by generating trees.

Résumé. On étudie les ensembles de permutations qui sont triées par deux passages dans une pile séparés par une
opération du groupe D8. À partir d’une caractérisation de ces ensembles en termes de motifs exclus généralisés, on
démontre deux conjectures sur leur énumération, qui peuvent être raffinées par la distribution de certaines statistiques.
Ces résultats sont obtenus à l’aide d’arbres de génération.
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1 Introduction
1.1 Permutations, diagrams and patterns
A permutation of Sn is a bijective map from {1, 2, . . . , n} to itself, n being called the size of the permu-
tation. In our context, we will view permutations in two different ways. A permutation σ of Sn can be
seen as a word σ1σ2 . . . σn where σi = σ(i) for all i ∈ {1, . . . , n}, containing exactly once each letter
from 1 to n. It can also be seen as what we call its diagram: an n × n grid with exactly one dot per row
and per column, the dots being placed in cells of coordinates (i, σ(i)). For every element of a permutation
σ, corresponding to the dot at coordinates (i, σ(i)) in its diagram, we call i its index and σ(i) its value.

Recall that for σ ∈ Sn, its reverse (resp. complement, resp. inverse) is the permutation r(σ) (resp.
c(σ), resp. i(σ)) defined by r(σ)(i) = σ(n+ 1− i) (resp. c(σ)(i) = n+ 1−σ(i), resp. i(σ)(i) = j such
that σ(j) = i). These operations correspond respectively to symmetries w.r.t. a vertical axis, a horizontal
axis and the south-west to north-east diagonal on the diagrams of the permutations (see Figure 1). Hence,
these three operations generate the eight element group D8 of the symmetries of the square.

From the word representation of permutations, we inherit basic concepts like word concatenation, or
subwords. A subword (with k letters) of a permutation is however not a permutation in general, as its
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Original permutation Reverse Complement Inverse

Fig. 1: The diagram of permutation σ = 416253, and its symmetries under r, c and i.

letters may not consist of all integers of {1, 2, . . . , k}. Each subword of a permutation σ can be nor-
malized to a permutation, that is then called a (classical) pattern of σ. More precisely, a permutation
π = π1π2 . . . πk is a (classical) pattern of a permutation σ = σ1σ2 . . . σn if and only if there exist inte-
gers 1 ≤ i1 < i2 < . . . < ik ≤ n such that σi1 . . . σik is order-isomorphic to π, i.e. such that σi` < σim
whenever π` < πm. The subsequence σi1 . . . σik is called an occurrence of π in σ. A permutation σ that
does not contain π as a pattern is said to avoid π.

Some generalizations of permutation patterns are frequent in the literature, and we will make use of two
of them here. When introducing dashes in a pattern π, we impose adjacency constraints on the elements
σi` of σ that form an occurrence of π. Namely, a permutation π = π1π2 . . . πk with dashes between
some pairs π`π`+1 is a dashed pattern of a permutation σ = σ1σ2 . . . σn if and only if there exist integers
1 ≤ i1 < i2 < . . . < ik ≤ n such that σi1 . . . σik is order-isomorphic to π and i`+1 = i` + 1 whenever
there is no dash between π` and π`+1 in π. Notice that classical patterns can be viewed as dashed patterns
with dashes between π` and π`+1 for any ` ∈ {1, . . . n − 1}, and that a dashed pattern with no dash
corresponds to a normalized factor of the permutation. However, in this article, we take the convention
that a pattern written with no dash is always a classical pattern. Pattern avoidance of dashed patterns is
defined as in the classical case.

The other generalization of pattern avoidance we consider is the one of patterns with one barred element
(or barred patterns for short). Consider a permutation π with one barred element, and denote by π∼ the
normalization of the subword of π obtained when deleting the barred element. We say that a permutation
σ contains the barred pattern π if there exists a (classical) occurrence of π∼ in σ that cannot be extended
into a (classical) occurrence of π in σ. Consequently, a permutation σ avoids the barred pattern π if every
occurrence of π∼ in σ can be extended into an occurrence of π in σ.

We denote byAv(π′, π′′, . . . , π′′′) the set of permutations that simultaneously avoid π′, π′′, . . . and π′′′.

Example 1.1 Permutation σ = 316452 avoids the classical pattern 2413 but contains the classical pat-
tern π = 2431, and the subwords 3642 and 3652 are its two occurrences in σ. Furthermore σ avoids
24-3-1 as a dashed pattern, as the elements corresponding to 2 and 4 are never at consecutive indices in
an occurrence of π in σ. Finally, σ avoids the barred pattern τ = 31̄542 as all the occurrences of τ∼ = π
can be extended with a smallest element to account for 1̄ .



Enumeration of permutations sorted with two passes through a stack and D8 symmetries 759

1.2 Some sorting operators on permutations
Barred patterns have been introduced for characterizing the permutations that can be sorted by two passes
of the stack sorting operator S in [West(1993)] (see Theorem 1.2 below). We say that a permutation
σ ∈ Sn is sorted by an operator Sort when Sort(σ) = 12 . . . n.

The operation of sorting a permutation σ = σ1 . . . σn through a stack is defined as follows. Consider
a stack that satisfies the Hanoi condition, i.e. such that the elements in the stack are in increasing order
from the top to the bottom of the stack. Starting from w = σ1 . . . σn and an empty stack, either put
the first letter of w on the stack (if this respects the Hanoi condition), or otherwise pop the element at
the top of the stack. When w and the stack are empty, a permutation has been output, which is the
result of the stack sorting of σ. More formally, the stack sorting operator is also classically characterized
recursively by S(ε) = ε and S(LnR) = S(L)S(R)n where n is the maximum of the word LnR of
distinct integers (which is not necessarily a permutation) and ε denotes the empty word. Other sorting
operators on permutations have been studied in the literature, in connexion with permutation patterns.
This is the case in [Claesson et al.(2007) ] for the tack sorting operator T defined by T(ε) = ε and
T(LnR) = T(R)T(L)n or in [Albert et al.(2011) ] for the bubble sort operator B defined by B(ε) = ε
and B(LnR) = B(L)Rn.

The tack sorting operator can be easily characterized by the identity T(σ) = S(r(σ)) for every permu-
tation σ. Therefore, the compositions of these two sorting operators can be interpreted as S◦T = S◦S◦r
and T◦S = S◦r◦S. Similarly, T◦T = S◦r◦S◦r. Hence, following the line of [West(1993)] and look-
ing for a characterization of the permutations that are sorted by these compositions of sorting operators,
we are lead to the analysis of the permutations that are sorted by S ◦ r ◦ S. We actually address a rather
more general question here: we characterize and enumerate permutations that are sorted by S ◦ α ◦ S for
any α in the group D8.

1.3 Permutations sorted by the composition of two sorting operators
For any sorting operator Sort, let us denote by Id(Sort) the set of permutations that are sorted by Sort,
i.e. Id(Sort) = ∪n{σ ∈ Sn : Sort(σ) = 12 . . . n}. It has been known since [Knuth(1973)] that
Id(S) = Av(231), and [West(1993)] has proved that Id(S ◦ S) = Av(2341, 35̄241). Theorem 1.2 below
has been proved by [Albert et al.(2010) ].

Theorem 1.2 The sets of permutations that are sorted by S ◦ α ◦ S, for any α in D8 are characterized
by:

(i) Id(S ◦ S) = Id(S ◦ i ◦ c ◦ r ◦ S) = Av(2341, 35̄241);

(ii) Id(S ◦ c ◦ S) = Id(S ◦ i ◦ r ◦ S) = Av(231);

(iii) Id(S ◦ r ◦ S) = Id(S ◦ i ◦ c ◦ S) = Av(1342, 31-4-2) = Av(1342, 35̄142);

(iv) Id(S ◦ i ◦ S) = Id(S ◦ r ◦ c ◦ S) = Av(3412, 3-4-21).

A natural question is then to look at the enumeration sequences (cn) of the sets C of pattern avoiding
permutations that appear in Theorem 1.2. Of course, the set Av(231) (which corresponds to one-stack
sortable permutations) is enumerated by the Catalan numbers Catn = 1

n+1

(
2n
n

)
(see [Knuth(1973)]);

and [Dulucq et al.(1998) ] proved that the set Av(2341, 35̄241) of two-stack sortable permutations is enu-
merated by 2(3n)!

(n+1)!(2n+1)! . For the two other sets, conjectures on their enumeration have been proposed
by [Claesson et al.(2007) ], and refined with the distribution of some statistics. These conjectures are
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stated as Theorems 1.3 and 1.4 and Conjecture 1.5 below. Theorems 1.3 and 1.4 are proved in the rest of
this article, and the proof of Conjecture 1.5 is a work in progress.

Theorem 1.3 The two sets Id(S◦S) and Id(S◦r◦S) are enumerated according to the size of the permuta-
tions by the same sequence. Moreover, the 15-tuple of statistics (des,maj, rmax, lmax, valley,peak,ddes,
dasc, zeil, indmax, rir, rdr, lir, ldr, slmax) has the same distribution on both sets.

Theorem 1.4 The set Id(S ◦ i ◦ S) is enumerated by the Baxter numbers.

Conjecture 1.5 The triple of statistics (des, lmax, comp) has the same distribution on Id(S ◦ i ◦ S) and
on the set of Baxter permutations.

The definitions of the statistics of Theorem 1.3 and Conjecture 1.5 are briefly recalled in Table 1. More
detailed definitions can be found in [Claesson and Kitaev(2008)] for instance.

des Number of descents
maj Major index, i.e. sum of the indices of the descents
comp Number of components

Largest k such that π can be written as the concatenation π = α1 · . . . · αk

with for all i < j, for all ai ∈ αi and aj ∈ αj , ai < aj .
The segments αi are called the components of π.

rmax, rmin, lmax, lmin Number of right-to-left (resp. left-to-right) maxima (resp. minima)
valley,peak,ddes,dasc Number of valleys (resp. peaks, double descents, double ascents)
rir, rdr, lir, ldr Length of the rightmost (resp. leftmost) increasing (resp. decreasing) run
indmax Index of the maximal element
zeil Largest k such that n(n− 1) . . . (n− k + 1) is a subword of π with n = |π|
slmax Largest k such that π1 ≥ πi for all i ∈ [1..k]

Tab. 1: Some classical statistics on permutations.

The set Bax of Baxter permutations has been first defined in [Baxter(1964)] and can be characterized
by excluded dashed patterns asBax = Av(2-41-3, 3-14-2) (see [Ouchterlony(2005)] for example). In this
article, we take this as the definition of Baxter permutations. The Baxter numbers (bn) enumerate the set
of Baxter permutations, and we have bn = 2

n(n+1)2

∑n
k=1

(
n+1
k−1

)(
n+1
k

)(
n+1
k+1

)
(see [Chung et al.(1978) ]).

Theorems 1.3 and 1.4 are proved using generating trees, and we recall the guidelines of this method
in Section 2. Theorem 1.3 is then proved in Section 3. Section 4 proves the enumerative result of The-
orem 1.4 by establishing a bijective correspondence (via a generating tree) between Id(S ◦ i ◦ S) and
Av(2-14-3, 2-41-3), this set being enumerated by the Baxter numbers (see [Guibert(1995)] or more re-
cently [Giraudo(2011)]). But this does not allow to follow the three statistics (des, lmax, comp) of Con-
jecture 1.5 directly. Going into further details of the bijection described by [Giraudo(2011)] and examin-
ing how the statistics are transformed by this bijection is a promising path to a proof of Conjecture 1.5.

2 Rewriting systems and generating trees
Generating trees have been first introduced by [West(1995)] in the context of pattern avoiding permu-
tations. [Barcucci et al.(1999) ] have extended the definition of generating trees to other combinatorial
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objects, as well as formalized it by means of the ECO-method. Here, we only recall some basics on gen-
erating trees and rewriting systems, before we apply this method in the proofs of Theorems 1.3 and 1.4.

2.1 Generating trees
A generating tree is an infinite rooted tree associated to a set C of permutations, whose vertices are
permutations. The root is the permutation 1 ∈ C, and permutations at distance n − 1 from the root are
exactly the permutations of size n in C, whose set is denoted by Cn.

There are several possible definitions of the edges of a generating tree. The four usual ones are as
follow: the parent of a permutation π ∈ Cn is the permutation of Cn−1 obtained from π by removing the
largest (resp. smallest, rightmost, leftmost) element of the permutation, and normalizing. This obviously
defines uniquely the parent of a permutation π 6= 1. Of course, depending on C and on the operation of
removing and normalizing that is chosen, it may result in a permutation that does not belong to C. This is
never the case when C is a pattern class, i.e. when the excluded patterns are classical patterns, but it may
happen when the excluded patterns are generalized patterns. In the case of barred patterns, the situations
in which it does not happen have been characterized in [Dulucq et al.(1998) , Prop. 6].

The above describes the way a parent is obtained from any of its children in the generating tree. In order
to build the tree efficiently from its root, it is certainly more convenient to describe instead how the children
of a permutation π are built from π. There are of course four possible insertion rules corresponding to
the four possibilities of removing an element that have been described earlier. For each insertion rule, we
define the sites of a permutation π ∈ C to be the places in which a new element may be inserted, resulting
in a permutation π′. The locations of these sites that are described below are intented with respect to the
diagram that represents permutation π. A site is said active when π′ ∈ C.
Insertion rule Largest The sites of a permutation π ∈ Cn are above π, and are located at the beginning,
at the end and between any two consecutive indices i and i+1 of π. The children of π are the permutations
of Cn+1 obtained when inserting a largest element in an active site of π.
Insertion rule Smallest The sites of a permutation π ∈ Cn are below π, and are located at the beginning,
at the end and between any two consecutive indices i and i+1 of π. The children of π are the permutations
of Cn+1 obtained when inserting a smallest element in an active site of π.
Insertion rule Rightmost The sites of a permutation π ∈ Cn are to the right of π, and are located below,
above and between any two consecutive values i and i + 1 of π. The children of π are the permutations
of Cn+1 obtained when inserting a rightmost element in an active site of π.
Insertion rule Leftmost The sites of a permutation π ∈ Cn are to the left of π, and are located below,
above and between any two consecutive values i and i + 1 of π. The children of π are the permutations
of Cn+1 obtained when inserting a leftmost element in an active site of π.

Notice that each of the four insertion rules corresponds to adding a new element on one of the four sides
of the square around the diagram that represent the permutation (see Figure 2).

2.2 Rewriting system
The shape of a generating tree associated to a set C of permutations contains information, even without
the permutations labeling the vertices, in particular for enumeration. Indeed, even when considering a
generating tree where the permutations labeling the vertices have been erased, we still have a bijection
between the vertices of this infinite tree and the permutations of C, which maps the size of a permutation
to the level a vertex in the tree (the level denoting the distance to the root +1 here).
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Fig. 2: The sites corresponding to each insertion rule, on the diagram representation of permutation π = 3241, and
the permutations resulting from the four insertion rules.

Rewriting systems are a way to describe the shape of a generating tree without the need of labeling each
vertex by a permutation. Instead, we can label the vertices of the tree by tuples -that are called labels-, in
such a way that the label of each vertex contains enough information on the corresponding permutation π
to build the labels of all the children of π. In general, these tuples indicate the values of some statistics on
π, such as the size, the number of active sites, . . . The shape of the tree is then completely described by a
rewriting system on the labels, that encapsulate the parent-child relation on the permutations.

Such a rewriting system consists of a starting point `0 (the label of permutation 1) and a set of rewriting
rules of the form `  L with L = {`a, . . . , `p}, that describe the labels `a, . . . , `p of the children of
a permutation whose label is `. Therefore, there is a bijection between permutations of size n in C and
sequences of labels (`0, `1, `2 . . . , `n−1) such that for any i, there is a rewriting rule `i  Li in the
system such that `i+1 ∈ Li. Consequently, when the same rewriting system is obtained for two sets C
and D of permutations, this implies that there is a bijection between C and D, that preserves the size of
the permutation. Notice that it is also possible to enrich the labels of the vertices to take into account the
value of one or more statistics on the corresponding permutations. In the case there is a common rewriting
system for C and D where the labels take into account statistics (s1, . . . , sk) in C and (r1, . . . , rk) in D,
then these statistics are equidistributed. Section 3 and 4 provide examples of this use of generating trees.
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3 Permutations sorted by S ◦ r ◦ S
3.1 A simple rewriting system
We prove that Id(S◦r◦S) is enumerated by the same sequence than Id(S◦S), by describing a generating
tree that is common for Id(S◦S) and Id(S◦r◦S). This tree is in fact identical to the common generating
tree for Av(3214, 2̄4135) and Av(3241, 2̄4153) given in [Dulucq et al.(1998) ]. Indeed, we have the
following correspondence:

Proposition 3.1 The c ◦ i operation provides a bijection between Id(S ◦ S) (resp. Id(S ◦ r ◦ S)) and
Av(3214, 2̄4135) (resp. Av(3241, 2̄4153)).

Because of the c ◦ i transformation, the insertion rule Largest that was used in the generating tree
of [Dulucq et al.(1998) ] is naturally transformed into the insertion rule Rightmost in the generating tree
for Id(S ◦ S) and Id(S ◦ r ◦ S). This incremental construction of permutations where active sites are
on the right is also known in the literature under the name of staff representation of permutations (see
[Bernini et al.(2005) ] for example). Furthermore, for the same reason, the sites on the right for Id(S ◦S)
and Id(S ◦ r ◦ S) are numbered from top to bottom, so that it mimics the numbering from left to right for
Av(3214, 2̄4135) and Av(3241, 2̄4153).

Theorem 3.2 The generating trees for both Id(S ◦S) and Id(S ◦ r ◦S) with the insertion rule Rightmost
are characterized by the following rewriting system

RΦ


(2, 1, (1))

(x, k, (p1, . . . pk))  (2 + pj , j, (p1, . . . , pj−1, i)) for 1 ≤ j ≤ k and pj−1 < i ≤ pj
(x+ 1, k + 1, (p1, . . . pk, i)) for pk < i ≤ x

where in the label (x, k, (p1, . . . , pk)) of a permutation π, x denotes the number of active sites of π,
k is the number of right-to-left maxima in π, and p` denotes the number of active sites above the `-th
right-to-left maximum in π (for the decreasing order of their values).

In Theorem 3.2 and in its proof, we use the convention that p0 = 0.
Figure 3 shows the first few levels of the generating tree corresponding to the rewriting systemRΦ.
An immediate consequence of Theorem 3.2 is that the rewriting system RΦ provides a bijection Φ

between Id(S ◦ S) and Id(S ◦ r ◦ S) that preserves the size and the number of right-to-left maxima.

Proof: It is enough to use the bijective correspondence via the c ◦ i transformation between respectively
Id(S ◦S) and Av(3214, 2̄4135), and Id(S ◦ r ◦S) and Av(3241, 2̄4153). Indeed, Theorem 3.2 is a direct
translation of Proposition 11 of [Dulucq et al.(1998) ] in this context. We however give the construction
used in the proof, since it will have to be further analyzed in the next subsection. We omit the proof that
this construction is correct, and refer the reader to [Dulucq et al.(1998) ] for details.

Permutation 1 belongs to Id(S◦S) and Id(S◦r◦S), has two active sites, one right-to-left maximum, and
one active site above this right-to-left maximum. Let us now examine the permutations that are obtained
when inserting a rightmost element into the active site of a permutation π of Id(S◦S) (resp. Id(S◦r◦S))
labeled (x, k, (p1, . . . pk)).

Consider π ∈ Id(S ◦ S) (resp. Id(S ◦ r ◦ S)), and one of its active site s, which is the i-th active site
in the numbering from top to bottom. Denote by π′ the permutation obtained from π by the insertion of a
rightmost element in site s.
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Fig. 3: The first levels of the generating tree corresponding to the rewriting systemRΦ.

Suppose first that site s is above the rightmost element of π. Then define j such that the largest right-
to-left maximum of π that is below s is the j-th one, and sj to be the site that immediately below (resp.
above) the j-th right-to-left maximum. Notice that in the case of Id(S ◦ S), the site sj is always active in
π. Then any site above sj (included) is active in π′ if and only if it was active in π, and the two sites that
have been created around the inserted element are both active. As for the sites below sj , they all become
inactive (resp. all but the bottommost site, which is always active).

If on the contrary site s is below the rightmost element of π, then any site is active in π′ if and only if
it was active in π, and the two sites that have been created around the inserted element are both active.

Figure 4 gives a graphical view of these two cases of insertion. In the first case, we have that 1 ≤ j,
and pj−1 < i ≤ pj , and the label of π′ is (2 + pj , j, (p1, . . . , pj−1, i)). In the second case, we have
pk < i ≤ x and the label of π′ is (x+ 1, k + 1, (p1, . . . pk, i)). 2

We can notice that in the above construction for Id(S ◦ S) (resp. Id(S ◦ r ◦ S)), the first, second and
third (resp. last) sites, and the site above any right-to-left maximum are active (see [Dulucq et al.(1998) ,
Lemma 12, (i) and (ii)] for the proof).

3.2 Refinements of the rewriting system

The rewriting system given by [Dulucq et al.(1998) ] for Av(3241, 2̄4153) and Av(3214, 2̄4135) is actu-
ally more precise, and takes into account the number of left-to-right maxima of a permutation π but also
the number of ascents in i(π). After the c ◦ i transformation, these statistics correspond to the number of
right-to-left maxima and the number of descents for permutations in Id(S ◦ S) and Id(S ◦ r ◦ S). Hence,
these two statistics are preserved by the bijection Φ between Id(S ◦ S) and Id(S ◦ r ◦ S). Actually every
statistics stat of Theorem 1.3 is preserved by Φ: for each of them, we can provide a refinement Rstat

Φ of
the rewriting systemRΦ, thus completing the proof of Theorem 1.3. Some of these rewriting systems are
given below; the others are ommited for the sake of brevity but are obtained in a similar fashion.
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Fig. 4: The two cases of insertion of a rightmost element into a permutation of Id(S ◦ S) and Id(S ◦ r ◦ S).

Number of left-to-right maxima The rewriting systemRΦ can be refined as follows to account for the
number of left-to-right maxima, in the part of the label denoted by q:

Rlmax
Φ



(2, 1, (1), 1)

(x, k, (p1, . . . pk), q)  (2 + p1, 1, (1), q + 1)

(2 + pj , j, (p1, . . . , pj−1, i), q) for 1 ≤ j ≤ k
and pj−1 < i ≤ pj , i 6= 1

(x+ 1, k + 1, (p1, . . . pk, i), q) for pk < i ≤ x

Proof: The insertion into an active site does not change the number of left-to-right maxima of π, unless
the insertion takes place in the topmost site of π. This site is always active, and in this case (corresponding
to i = j = 1), one left-to-right maximum is created. 2

Length of the leftmost decreasing run The rewriting system RΦ can be refined as follows to account
for the length of the leftmost decreasing run, in the part of the label denoted by q:

Rldr
Φ



(2, 1, (1), 1, 1)

(x, k, (p1, . . . pk), n, q)  (2 + pj , j, (p1, . . . , pj−1, i), n+ 1, q) for 1 ≤ j ≤ k
and pj−1 < i ≤ pj

(x+ 1, k + 1, (p1, . . . pk, i), n+ 1, q) for pk < i < x

(x+ 1, k + 1, (p1, . . . pk, x), n+ 1, q + δn,q)

where δn,q is 1 if n = q and 0 otherwise
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It is necessary in this case to also account for more than just the value of the considered statistics in the
label. Here, we furthermore introduced the size of the permutations, denoted by n.

Proof: The only case where the length of the leftmost decreasing run may change (being increased by
1) is when π is n(n − 1) . . . 21 and the insertion is performed in the bottommost site of π. For π =
n(n− 1) . . . 21, the bottommost site is always active, for Id(S ◦S) and Id(S ◦ r ◦S). An insertion in this
special case is always an insertion in the x-th active site of π and corresponds to the case where q = n. 2

The slmax statistics Recall that the slmax statistics is defined, for any permutation π, as the largest k
such that π1 ≥ πi for all i ∈ [1..k]. The rewriting systemRΦ can be refined as follows to account for the
slmax statistics in the part of the label denoted by q:

Rslmax
Φ



(2, 1, (1), 1, 1)

(x, k, (p1, . . . pk), q, n)  (2 + p1, 1, (1), q, n+ 1)

(2 + pj , j, (p1, . . . , pj−1, i), q + δq,n, n+ 1) for 1 ≤ j ≤ k
and pj−1 < i ≤ pj , i 6= 1

(x+ 1, k + 1, (p1, . . . pk, i), q + δq,n, n+ 1) for pk < i ≤ x
where δq,n is 1 if q = n and 0 otherwise

Here, we also introduced the size of the permutations, denoted by n.

Proof: The insertion in the topmost site of π (which is always active) does not change the value of the
slmax statistics. The insertion in any other site may change the value of this statistics, increasing it by 1.
This happens exactly when π starts with its maximum, and this situation is characterized by the equality
q = n. 2

4 Permutations sorted by S ◦ i ◦ S: enumerative result
We describe a common generating tree for Id(S ◦ i ◦ S) and Av(2-14-3, 2-41-3). This is not the class
of Baxter permutations, but they are equi-enumerated, as proved in [Guibert(1995)] or [Giraudo(2011)].
This will prove Theorem 1.4.

Theorem 4.1 The generating trees for both Id(S◦ i◦S) and Av(2-14-3, 2-41-3), with the insertion rules
Smallest and Largest respectively, are characterized by the following rewriting system:

RΨ


(2, 0)

(r, s)  (i+ 1, r + s− i) for 1 ≤ i ≤ r
(r, s− j) for 1 ≤ j ≤ s

where the labels (r, s) of a permutation π are interpreted as follows:
For any permutation π of size n in Id(S ◦ i ◦ S):
• r is the index of the second element in the first ascent of π (or n+ 1 if π = n(n− 1) · · · 21),

• s is the number of active sites to the right of the first ascent of π.
For any permutation π of size n in Av(2-14-3, 2-41-3):
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• r is the number of active sites to the left of n plus 1 (the site following n immediately),

• s is the number of active sites to the right of n minus 1 (the site following n immediately).

Proof: Let us first study Id(S ◦ i ◦ S) = Av(3412, 3-4-21) with the insertion rule Smallest. It is readily
checked that if π avoids 3412 and 3-4-21, then so does the permutation obtained from π by deleting its
smallest element and normalizing. This justifies that we have a generating tree, whose root 1 is labeled
(2, 0) according to the interpretation of the labels given in Theorem 4.1. It can further be noticed that a
site which is inactive in π cannot be active in any child of π.

It is easily proved that a site x of π is inactive if and only if there are elements a < b < c such that bca
is a subsequence of π and x is either between c and a or follows a immediately. In particular, every site
that precedes the first ascent of π and the site inside this first ascent are active.

The number of such active sites correspond to r in the label of π. The insertion of 1 in such a site of
π (say the i-th such site) does not deactivate any site that was active in π, and the sites that were inactive
in π remain inactive. Hence, r children of π are obtained by insertions of this first type, whose labels are
(i+ 1, s+ r − i) for 1 ≤ i ≤ r.

The other children π′ of π are obtained by insertion of 1 in active sites that are to the right of the first
ascent of π, that we denote by bc. The insertion of 1 in such a site (say the j-th such site) creates a
subsequence bc1 in π′ so that the sites between c and 1 and just after 1 are inactive in π′. So j active sites
to the right of the first ascent become inactive. For the other sites, as before they are active in π′ if and
only if they were active in π. Hence, s children of π are obtained by insertions of this second type, whose
labels are (r, s− j) for 1 ≤ j ≤ s.

We now turn to the study of Av(2-14-3, 2-41-3) with the insertion rule Largest. As above, if π avoids
2-14-3 and 2-41-3, then so does the permutation obtained from π by deleting its largest element, so that we
have a generating tree. Its root 1 is labeled (2, 0) according to the interpretation of the labels. Furthermore,
denoting n the size of π, the followings can be readily proved:
• the site immediately to the right of n is active;
• when inserting n+ 1 into an active site of π, the sites to the right of n+ 1 are active if and only if

they were active in π;
• the sites to the left of n are active if and only if they are located between two adjacent left-to-right

maxima of π.
With these three facts, a careful examination allows to prove that the insertion of n + 1 in the i-th active
site to the left of n, for 1 ≤ i ≤ r − 1 (resp. in the site immediately to the right of n, resp. in the j + 1-th
active site to the right of n, for 1 ≤ j ≤ s), produces a child of π labeled by (i + 1, r + s − i) (resp.
(r + 1, s), resp. (r, s− j)). 2

We claim that as in the case of Theorem 1.3, and although it requires to introduce additional statis-
tics in the label, this rewriting system for Id(S ◦ i ◦ S) can be refined to follow the triple of statistics
(des, lmax, comp). This however does not prove Conjecture 1.5, as we need first to examine how these
statistics on Baxter permutations are transported on permutations avoiding 2-14-3 and 2-41-3, and second
to refine the rewriting system for Av(2-14-3, 2-41-3) according to these new statistics. The second part
is likely to be solved when the statistics on Av(2-14-3, 2-41-3) are known. However, they seem hard to
characterize with the bijection of [Guibert(1995)]: because it relies on a generating tree, the one-to-one
correspondence is not effective. On the contrary, [Giraudo(2011)] has recently given a constructive bijec-
tion between Av(2-14-3, 2-41-3) and the set of Baxter permutations. This bijection actually establishes a
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one-to-one correspondence from each of these to pairs of twin binary trees. Hence, a promising path to
conclude the proof of Conjecture 1.5 is to interpret the statistics (des, lmax, comp) on Baxter permuta-
tions as some triple of statistics on pairs of twin binary tree, and then to interpret these new statistics on
the permutations of Av(2-14-3, 2-41-3). This is indeed a work in progress.
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1995.

http://arxiv.org/abs/1011.4288

	Introduction
	Permutations, diagrams and patterns
	Some sorting operators on permutations
	Permutations sorted by the composition of two sorting operators

	Rewriting systems and generating trees
	Generating trees
	Rewriting system

	Permutations sorted by S r S
	A simple rewriting system
	Refinements of the rewriting system

	Permutations sorted by S i S: enumerative result

