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Extending from bijections between marked
occurrences of patterns to all occurrences of patterns

Jeffrey Remmel and Mark Tiefenbruck
Department of Mathematics, University of California, San Diego, USA

Abstract. We consider two recent open problems stating that certain statistics on various sets of combinatorial objects
are equidistributed. The first, posed by Anders Claesson and Svante Linusson, relates nestings in matchings on
{1, 2, . . . , 2n} to occurrences of a certain pattern in permutations in Sn. The second, posed by Miles Jones and
Jeffrey Remmel, relates occurrences of a large class of consecutive permutation patterns to occurrences of the same
pattern in the cycles of permutations. We develop a general method that solves both of these problems and many
more. We further employ the Garsia-Milne involution principle to obtain purely bijective proofs of these results.

Résumé. Nous considérons deux dernières problèmes ouverts indiquant que certaines statistiques sur les divers en-
sembles d’objets combinatoires sont équiréparties. La première, posée par Anders Claesson et Svante Linusson,
concerne les imbrications dans des filtrages sur {1, 2, . . . , 2n} pour les occurrences d’un certain modèle de permu-
tations dans Sn. La seconde, posée par Miles Jones et Jeffrey Remmel, concerne les occurrences d’une large classe
de schémas de permutation consécutive aux événements du même modèle dans les cycles de permutations. Nous
développons une méthode générale qui résout ces deux problèmes et beaucoup plus. Nous avons également utiliser
le principe d’involution Garsia-Milne pour obtenir des preuves purement bijective de ces résultats.

Keywords: bijection, permutation statistics, generating function, partially marked pattern family

1 Introduction
In this paper, we present a general method for proving that certain pairs of statistics are equidistributed.
In short, we embed the objects under consideration into much larger sets. Given a bijection between these
larger sets with certain properties, our method can be used to prove the original statement. Further, our
method may be augmented with the Garsia-Milne involution principle [3] to obtain bijective proofs of
these results.

As examples of the method, we consider two recent open problems, one by Claesson and Linusson [2]
and one by Jones and Remmel [4]. In the remainder of this section, we introduce these two problems. In
Section 2, we present the general method by which these and many other problems can be solved. Finally,
in Section 3, we provide the necessary bijections for these two problems.

1.1 Claesson and Linusson’s problem
Define the set [n] = {1, 2, . . . , n}. Following Claesson and Linusson [2], we make the following defi-
nitions. A matching on [2n] is a partition of that set into blocks of size 2. An example of a matching is
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M = {(1, 3), (2, 7), (4, 6), (5, 8)}. (1)

In the diagram below there is an arc connecting i with j precisely when (i, j) ∈M .

1 2 3 4 5 6 7 8

A nesting of M is a pair of arcs (i, `) and (j, k) with i < j < k < `:

i j k `

We call such a nesting a left-nesting if j = i + 1. Similarly, we call it a right-nesting if ` = k + 1. A
nesting may be a left-nesting, a right-nesting, both, or neither. M has one nesting, formed by the arcs
(2, 7) and (4, 6). It is a right-nesting.

In a permutation π = π1 . . . πn, an occurrence of the pattern

is a subsequence πiπi+1πj such that πj + 1 = πi < πi+1. As an example, the permutation π = 351426
contains one such occurrence, 352. It can be seen graphically in the following permutation diagram:

Bousquet-Mélou et al. [1] gave bijections between matchings on [2n] with no left- or right-nestings and
three other classes of combinatorial objects, thus proving that they are equinumerous. The other classes
were unlabeled (2+2)-free posets (or interval orders) on n nodes; permutations in Sn avoiding the pattern

; and ascent sequences of length n. Claesson and Linusson conjectured that the distribution of right-
nestings in matchings on [2n] with no left-nestings is equal to the distribution of occurrences of in
Sn.

1.2 Jones and Remmel’s problem
Let σ = σ1σ2 . . . σn ∈ Sn, let w = (w1w2 . . . wn) be a cycle in a permutation, and let π ∈ Sm, where
m ≤ n. A match of the pattern π in σ is a sequence of consecutive elements σiσi+1 . . . σi+m−1 that have
the same relative order as the entries of π. A cycle-match of the pattern π inw is a sequence of consecutive
elements of w, where w1 follows wn, that have the same relative order as the entries in π. For example,
in the permutation 35124, 351 is a 231-match, and in the cycle (34769), 693 is a 231-cycle-match.
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Jones and Remmel [4] showed that if π ∈ Sm begins or ends with 1 or m, then the number of π-cycle-
matches in the cycles of the permutations in Sn has the same distribution as the number of π-matches in the
permutations in Sn. They conjectured this was true for any π that cannot cover a cycle with overlapping
π-cycle-matches. For example, in the cycle w = (31425), 3142 and 4253 are 3142-cycle-matches that
cover w, whereas no cycle can be covered by 2143-cycle-matches.

2 Main Theorem
Direct arguments to prove these two conjectures remain elusive. Instead, we consider the set of objects
where each occurrence is either “marked” or “not marked”. For example, in extending the set of matchings
on [2n], a matching with k right-nestings would appear 2k times in the new set, once with each subset
of its right-nestings considered marked. We wish to find a bijection θn that takes a matching M on [2n]
with no left-nestings and sends it to a permutation σ ∈ Sn with the same number of occurrences of
as M has right-nestings. Instead, our method is to produce a bijection Γn between these larger sets that
preserves the number of marked occurrences. In this section, we give a very general description of this
setup and state the desired result.

The main purpose of this paper is to show that there is a general mechanism to construct our desired
bijections θn from the bijections Γn. We consider the following setup. Let N denote the set of natural
numbers. For any alphabet A, we let A∗ denote the set of all words over A and let An denote the set
of all words of length n over A. We let ε denote the empty word. A pattern family is a set of the form
F =

⋃
n≥0〈f, g,Fn, An,Pn〉 where f and g are functions mapping N into N and for each n ≥ 0,

1. An is a finite alphabet,

2. Fn is a subset of Af(n)n ,

3. Pn is a totally ordered set of patterns, P1, P2, . . . , Pg(n), where for each i, Pi is a set of pairs
〈a1a2 . . . ak, Ta1a2...ak〉 where 1 ≤ a1 < · · · < ak ≤ f(n) and Ta1a2...ak ⊆ Akn. Here we do not
require that the sequences a1a2 . . . ak that appear as the first elements of pairs in Pi are all of the
same length, but we do insist that all such sequences are distinct.

An occurrence of the pattern Pi ∈ Pn in a sequence s = s1 . . . sf(n) ∈ Fn is a subsequence of indices
a1a2 . . . ak such that there exists a pair 〈a1a2 . . . ak, Ta1a2...ak〉 ∈ Pi and sa1sa2 . . . sak ∈ Ta1a2...ak . We
let Pi(s) denote the number of occurrences of the pattern Pi in the sequence s. We shall be interested in
the generating function

RF (t, x1, x2, . . .) =
∑
n≥0

tn
∑
s∈Fn

g(n)∏
i=1

x
Pi(s)
i (2)

as well as its specialization

RF (t, x) =
∑
n≥0

tn
∑
s∈Fn

x
∑g(n)

i=1 Pi(s) (3)

We note that we allow g(n) = 0, in which case we will assume that Pn = ∅ and interpret
∏g(n)
i=1 x

Pi(s)
i

and x
∑g(n)

i=1 Pi(s) to be equal to 1.
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Given a pattern family F =
⋃
n≥0〈f, g,Fn, An,Pn〉, we can form the partially marked pattern family

PMF =
⋃
n≥0〈f, g,PMFn, An,Pn〉 fromF where ifPn = {P1, . . . , Pg(n)}, thenPMFn consists of

all (g(n)+1)-tuples 〈s,H1, . . . ,Hg(n)〉 such that s ∈ Fn and for i = 1, . . . , g(n), Hi is a possibly empty
set of occurrences of the pattern Pi in s. Thus we can think of the (g(n) + 1)-tuple 〈s,H1, . . . ,Hg(n)〉 as
an element s ∈ Fn where some of the occurrences of Pi in s are “marked” for i = 1, . . . , g(n). We define
the weight of 〈s,H1, . . . ,Hg(n)〉 to be

wPMF (s,H1, . . . ,Hg(n)) =

g(n)∏
i=1

y
|Hi|
i (4)

where again we make the convention that if g(n) = 0, then we set wPMF (s) = 1. In such a situation, we
shall consider the generating function

MRF (t, y1, y2, . . .) =
∑
n≥0

tn
∑

(s,H1,...,Hg(n))∈PMFn

wPMF (s,H1, . . . ,Hg(n)) (5)

as well as its specialization
MRPMF (t, y) = MRF (t, y, y, . . .) (6)

The key result of this paper is the following theorem.
Theorem 1 Suppose that F is a pattern family and PMF is the partially marked pattern family con-
structed from F . Then

MRF (t, x1 − 1, x2 − 1, . . .) = RF (t, x1, x2, . . .), (7)

so that
MRF (t, x− 1) = RF (t, x). (8)

We prove Theorem 1 via a simple involution. Now Theorem 1 has the following obvious corollary.

Corollary 1 Suppose that F =
⋃
n≥0〈f, g,Fn, An,Pn〉 and G =

⋃
n≥0〈h, g,Gn, Bn,Qn〉 are pattern

families. (Here we are not insisting that f = h which means that for any given n, the elements of Fn
and Gn can have different lengths, but we are insisting that the number of patterns in Pn and Qn are the
same.) Let PMF =

⋃
n≥0〈f, g,PMFn, An,Pn〉 and PMG =

⋃
n≥0〈h, g,PMGn, Bn,Qn〉 be the

partially marked pattern families constructed from F and G, respectively. Then

MRF (t, y1, y2, . . .) = MRG(t, y1, y2, . . .) (9)

implies
RF (t, x1, x2, . . .) = RG(t, x1, x2, . . .). (10)

We can give a completely bijective proof of Corollary 1 by combining our proof of Theorem 1 with the
involution principle of Garsia and Milne [3]. That is, for all n ≥ 0, if there is a bijection Γn : PMFn →
PMGn such that for all (s,H1, . . . ,Hg(n)) ∈ PMFn,

wPMF (s,H1, . . . ,Hg(n)) = wPMG(Γn((s,H1, . . . ,Hg(n))), (11)

then we can construct a bijection θn : Fn → Gn from Γn such that for all s ∈ Fn,
g(n)∏
i=1

x
Pi(s)
i =

g(n)∏
i=1

x
Qi(θn(s))
i (12)

where Pn = {P1, . . . , Pg(n)} and Qn = {Q1, . . . , Qg(n)}.
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3 Bijections between marked occurrences
With Corollary 1 in hand, all we need is to define the bijections Γn that preserve the number of marked
occurrences. In this section, we provide those bijections for the two problems stated in Section 1.

3.1 Claesson and Linusson’s problem
In order to use Corollary 1, we first must express our sets as pattern families. While this is straightforward
for occurrences of in Sn, matchings on [2n] do not easily fit into this framework. We will first need to
define an encoding of matchings with no left-nestings as words, then define a pattern that corresponds to
right-nestings. There are a few obvious encodings, but Claesson and Linusson [2] give a bijection between
these matchings and inversion tables that will better suit our needs.

LetMn be the set of matchings on [2n], and let M ∈Mn. If i < j and α = (i, j) is an arc in M , then
we call i the opener of α and j the closer of α. Order the arcs of M by closer, so for example, the arc
with closer 2n is the nth arc. Define In as the Cartesian product

In = [0, 0]× [0, 1]× · · · × [0, n− 1], (13)

where [i, j] = {i, i + 1, . . . , j}. An element of In is called an inversion table. Then the function f :
Mn → In, given by f(M) = (a1, a2, . . . , an), where ai is the number of closers less than the opener of
the ith arc of M , is a bijection. Tracing the definition through, we find that a right nesting corresponds to
an index k < n such that ak > ak+1 and ai 6= k for all i > k + 1. We call k a proscriptive descent.

Clearly, In can be written as a set of words on the alphabet [0, n − 1]. Moreover, we can construct a
pattern family corresponding to proscriptive descents. We will now use this setup to construct the bijection
Γn. Our construction will be recursive, so define Γ0 to map the empty inversion table to the empty
permutation, and suppose that Γn−1 has already been defined. Let I = (a1, a2, . . . , an−1) ∈ In−1, and
let H be a set of proscriptive descents in I . Let (σ, J) = Γn−1(I,H) be the corresponding permutation
in Sn−1 and set of occurrences of .

We consider the ways that I can be extended to an element of In with the same set H: an may be
chosen freely from [0, n− 1] \H . Also, σ can be extended to an element of Sn with essentially the same
set J by inserting a new smallest element (“essentially” because every element of σ is increased by 1
and some move to the right). For example, inserting into the second position of 35124 yields 416235. If
j > i + 1 and σj + 1 = σi < σi+1 is an occurrence of in J , then we may not insert a new smallest
element at position i+ 1. Thus, there are n− |J | places we may insert a new smallest element.

For k = 1, 2, . . . , n − |H|, let I(k) be the extension of I such that an is chosen to be the kth smallest
valid choice, let σ(k) be the extension of σ where a new smallest element is placed in the kth valid position
from the right, and let J (k) be the corresponding set of occurrences of . Then, define Γn(I(k), H) =

(σ(k), J (k)). Further, if n−1 is a proscriptive descent in I(k), then the new smallest element will create an
occurrence of in σ(k) with σi = 2 and σj = 1. If J ′(k) is the set J (k) with this occurrence included,
then define Γn(I(k), H ∪ {n− 1}) = (σ(k), J ′(k)).

3.2 Jones and Remmel’s problem
Fix π so that no cycle can be covered by overlapping π-cycle-matches. It is clear that π-matches and
π-cycle-matches in permutations in Sn can be converted to the framework of pattern families. For σ ∈ Sn
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andH a set of π-cycle-matches in σ, we need to define Γn(σ,H) = (τ, J) such that J is a set of π-matches
in τ .

First, order the cycles of σ in decreasing order by smallest element. Write each cycle so that the smallest
element is written first. If any π-cycle-match inH wraps around the end of its cycle, then rewrite the cycle
so that it begins with that π-cycle-match. Repeat until no element of H wraps around the end of its cycle.
This is always possible because of the condition on π. Finally, remove the parentheses from the cycles of
σ to obtain τ , and set J = H . For example, if π = 2143, σ = (1542)(36), and H = {2154}, then we
first write σ = (36)(1542), then σ = (36)(2154), then τ = 362154. On the other hand, if H = ∅, then
τ = 361542.

In this case, our bijection tells us even more: there is a bijection θn such that θn(σ) has the exact
same π-matches as σ’s π-cycle-matches. We may also extend this result in a different way: If P is a set
of permutations such that no combination of them can cover a cycle with cycle-matches, then there is a
bijection θn such that θn(σ) has the exact same matches as σ’s cycle-matches among P . The following
are two interesting classes of such sets.

If σ ∈ Sn, define σ.∗ = {τ : τ ∈ ∪m≥nSm, τi = σi for 1 ≤ i ≤ n} and σ.+ = {τ : τ ∈
∪m>nSm, τi = σi for 1 ≤ i ≤ n}. Then, for any k,

k(k − 1)...1.+ ∪ 12.∗ ∪ 213.∗ ∪ · · · ∪ (k − 1)(k − 2)...1k.∗ (14)

and ⋃
σ∈Sk

σ.+ (15)

satisfy the necessary conditions.

4 Conclusion
In addition to the examples in this paper, we have found interesting new results involving rook placements
and permutation statistics. It is clear that the method can be applied to many more types of combinatorial
objects as well. We believe this is a powerful method of finding bijections that can be used to solve a wide
variety of problems.
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