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Network parameterizations for the
Grassmannian

Kelli Talaskd and Lauren Williams
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Abstract. Deodhar introduced his decomposition of partial flag vageas a tool for understanding Kazhdan-Lusztig
polynomials. The Deodhar decomposition of the Grassmarisialso useful in the context of soliton solutions to
the KP equation, as shown by Kodama and the second authodhBeoomponent§p of the Grassmannian are
in bijection with certain tableau® called Go-diagrams and each component is isomorphic(i&*)* x (K)® for
some non-negative integeisandb. Our main result is an explicit parameterization of eachdbewm component in
the Grassmannian in terms of networks. More specificalymfa Go-diagranD we construct a weighted network
Np and itsweight matrixi¥p, whose entries enumerate directed path¥ i By letting the weights in the network
vary overKK or K* as appropriate, one gets a parameterization of the DeodimapanentSp. One application
of such a parameterization is that one may immediately oeter which Plicker coordinates are vanishing and
nonvanishing, by using the Lindstrom-Gessel-Viennot Lemi/e also give a (minimal) characterization of each
Deodhar component in terms of Pliicker coordinates.

Résume. Deodhar a introduit une décomposition des variétésedrap pour comprendre les polyndmes de Kazhdan-
Lusztig. La decomposition de Deodhar des Grassmanniezsiesissi utile dans le contexte des solutions solitons de
I'equation KP, ce qui a été établi par Kodama et le demé ‘auteur. Les composantes de Deodhasont en bijection
avec certains tableau® appelésiiagrammes de Get chaque composante est isomorptE)® x (K)® olia etb

sont des entiers positifs. Notre résultat principal est paramétrisation explicite de chaque composante de Reodh
des Grassmanniennes en termes de réseaux. Plus préctisarpartir d'un diagramme de @, nous construisons

un réseauVp et samatrice de poid$¥p, dont les composantes énumerent les chemins dirigésNan En faisant
varier les poids dank ouK*, nous obtenons une paramétrisation de la composante dihBxet,. Une application

de cette paramétrisation est que nous pouvons déteropiredies coordonnées de Pliicker s’annulent, en utiligant
lemme de Lindstrom-Gessel-Viennot. Nous donnons ausstareetérisation minimale de chaque composante en
termes de coordonnées de Pliicker.

Keywords: Grassmannian, Deodhar decomposition, networks

1 Introduction

There is a remarkable subset of the real Grassmart@ign,(R) called itstotally non-negative part
(Gri.n)>o [7, 9], which may be defined as the subset of the real Grassarammere all Plicker coor-
dinates have the same sign. Postnikov showed(tHat ,,)>¢ has a decomposition infoositroid cells
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which are indexed by certain tableaux callediagrams. He also gave explicit parameterizations of each
cell. In particular, he showed that from eadtdiagram one can produce a plamatwork and that one
can write down a parameterization of the correspondingusitig theweight matrixof that network. This
parameterization shows that the cell is isomorphi@tg, for somed. Such a parameterization is con-
venient, because for example, one may read off formulaslfaker coordinates from non-intersecting
paths in the network, using the Lindstrom-Gessel-Vienmrhma.

A natural question is whether these network parameteoizafior positroid cells can be extended from
(Gri.n)>o to the entire real Grassmanniéry, , (R). In this paper we give an affirmative answer to this
question, by replacing the positroid cell decompositioththie Deodhar decomposition of the Grassman-
nianGry, », (K) (hereK is an arbitrary field).

The components of the Deodhar decomposition are not in geeats, but nevertheless have a simple
topology: by [2, 3], each one is isomorphic(*)* x (K)°. The relation of the Deodhar decomposition
of Gri.»(R) to Postnikov's cell decomposition ¢&7x ,, ) >0 is as follows: the intersection of a Deodhar
componenfp = (R*)%x (R)® with (Gry..) >0 is precisely one positroid cell isomorphic(®-.()® if b =
0, and is empty otherwise. In particular, when one intersibhet®©eodhar decomposition witler, ., ) >0,
one obtains the positroid cell decomposition(6fry, ,,)>0. There is a relategositroid stratificationof
the real Grassmannian, and each positroid stratum is a vfiibaodhar components.

As for the combinatorics, components of the Deodhar decaitipo are indexed bylistinguished
subexpressiong, 3], or equivalently, by certain tableaux call€b-diagramg6], which generalizel-
diagrams. In this paper we associate a network to each Gpatiig and write down a parameterization
of the corresponding Deodhar component using the weightixnaft that network. Our construction
generalizes Postnikov’s, but our networks are no longargslan general.

Our main results can be summed up as follows. See TheorerisaBd 4.3 and the constructions
preceding them for complete details.

Theorem. LetK be an arbitrary field.

e Every point inGry, ., (K) can be realized as the weight matrix of a unique network aatezt to
a Go-diagram, and we can explicitly construct the corresfing network. The networks corre-
sponding to points in the same Deodhar component have the saderlying graph, but different
weights.

e Every Deodhar component may be characterized by the vagisgmd nonvanishing of certain
Plucker coordinates. Using this characterization, we caroaplicitly construct the network
associated to a point given either by a matrix repsreseveatr by a list of Plicker coordinates.

To illustrate the main results, we provide a small example h&lore complicated examples may be
seen throughout the rest of the paper.

Example 1.1. Consider the Grassmannia®r, 4. The large Schubert cell in this Grassmannian can be
characterized as

Q>\ = {A S G’f‘g,4 | Al,g(A) 75 0},

whereA ; denotes the Ricker coordinate corresponding to the column.8éh a matrix representative of
apointinGrs 4. This Schubert cell contains multiple positroid strataglirding Sz, whereZ is the Grass-
mann necklac& = (12, 23, 34, 14). This positroid stratum can also be characterized by the aaishing
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Fig. 1: The diagrams and networks associatedtg and.Sp, in Example 1.1.

of certain Plicker coordinates:
St ={A€Gras|A12(A) #0, Ag3(A) #0, Aga(A) #0, Ay 4(A) # 0}.

Figure 1 shows two Go-diagrani3; and D, and their associated networks. Note that the network on
the right is not planar. The weight matrices associated &sthdiagrams are

(1 0 —as —(a3a4—|—a3a2)> and <1 0 —ag —a304>

0 1 aq a1a9 0 1 0 a9

The positroid stratunbz is the disjoint union of the two corresponding Deodhar congrasSp, and
Sp,,» which can be characterized in terms of vanishing and noistéimg of minors as:

SD] = {A S SI | A1,3 75 O} andSD2 = {A S SI | A1,3 = O}

Note that if one lets the;’s range overK* and letsc, range overk, then we see thap, = (K*)* and
SD2 = (K*)2 x K.

There are several applications of our construction. Fasg special case of our theorem, one may pa-
rameterize alk x n matrices using networks. Second, by applying the Lindst@essel-Viennot Lemma
to a given network, one may write down explicit formulas ftiidker coordinates in terms of collections
of non-intersecting paths in the network. Third, buildingpa work of [6], we obtain (minimal) descrip-
tions of Deodhar components in the Grassmannian, in termamishing and nonvanishing of Pliicker
coordinates. It follows that each Deodhar component is aruof matroid strata.

Although less well known than the Schubert decompositiocsh matroid stratification, the Deodhar
decomposition is very interesting in its own right. Deodhariginal motivation for introducing his de-
composition was the desire to understand Kazhdan-Lusalignpmials. In the flag variety, one may
intersect two opposite Schubert cells, obtaining a Rickamdrariety, which Deodhar showed is a union
of Deodhar components. Each Richardson vafiey, (¢) may be defined over a finite field = F,, and
in this case, the number of points determines polynomialsR, .,(¢) = # (R, (Fy)), introduced
by Kazhdan and Lusztig [4] to give a recursive formula for Kezhdan-Lusztig polynomials. Since
each Deodhar component is isomorphig(Iij)* x (F,)" for somea andb, if one understands the de-
composition of a Richardson variety into Deodhar compagiehen in principle one may compute the
R-polynonomials and hence Kazhdan-Lusztig polynomials.

Another reason for our interest in the Deodhar decompasigidts relation to soliton solutions of the
KP equation. It is well-known that from each poidtin the real Grassmannian, one may construct a
soliton solutionu 4 (z, y, t) of the KP equation. It was shown in recent work of Kodama ardsttcond
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author [6] that when the time variabiéends to— oo, the combinatorics of the solutian (z, y, t) depends
precisely on which Deodhar componehties in.

The outline of this paper is as follows. In Section 2, we gieme background on the Grassmannian
and its decompositions, including the Schubert decomipasthe positroid stratification, and the matroid
stratification. In Section 3, we present our main constamctive explain how to construct a network from
each diagram, then use that network to write down a paraipatien of a subset of the Grassmannian
that we call a network component. Our main result is that tielsvork component coincides with the
corresponding Deodhar component in the GrassmannianllyFin&ection 4 we give a characterization
of Deodhar components in terms of the vanishing and nonkang®f certain Plicker coordinates.

ACKNOWLEDGEMENTS L.W. is grateful to Yuji Kodama for their joint work on sadit solutions of
the KP equation, which provided motivation for this project

2 Background on the Grassmannian

The GrassmanniarGGry ,, is the space of alk-dimensional subspaces of ardimensional vector space
K™. In this paper we will usually IeK be an arbitrary field, though we will often think of it &or C.
An element oiGry, ,, can be viewed as a full-rarfkx » matrix modulo left multiplication by nonsingular
k x k matrices. In other words, twk x n matrices represent the same poinidny, ,, if and only if
they can be obtained from each other by row operations.([l;‘ét be the set of alk-element subsets of
[n] :=={1,...,n}. Forl € ([Z]), let A7 (A) be thePlucker coordinatethat is, the maximal minor of the

k x n matrix A located in the column sét The mapA — (A;(A)), wherel ranges ove([z]), induces

thePlucker embedding'ry, , — KP(:) 1 into projective space.

We now describe several useful decompositions of the Grassian: the Schubert decomposition,
the positroid stratification, and the matroid stratificatioNote that the matroid stratification refines the
positroid stratification, which refines the Schubert decositpn. The main subject of this paper is the
Deodhardecomposition of the Grassmannian, which refines the pidistratification, and is refined by
the matroid stratification (as we prove in Corollary 4.4).

2.1 The Schubert decomposition of Gry,

Throughout this paper, we identify partitions with theiruvgy diagrams. Recall that the partitions
contained in & x (n — k) rectangle are in bijection witk-element subset C [n]. The boundary of
the Young diagram of such a partitionforms a lattice path from the upper-right corner to the lower
left corner of the rectangle. Let us label thesteps in this path by the numbers.. ., n, and define

I = I()) as the set of labels on thevertical steps in the path. Conversely, we Mf) denote the
partition corresponding to the subdet

Definition 2.1. For each partition) contained in & x (n — k) rectangle, we define tHéchubert cell
Qx = {A € Gry, | I()) is the lexicographically minimal subset such thgg ) (A) # 0}.

As) ranges over the partitions contained irka (n— k) rectangle, this gives thechubert decomposition
of the Grassmannia@'ry, ,,, i.e.

GTk_’n = U Q)\.
AC(n—k)k
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We now define thahifted linear order<; (for i € [n]) to be the total order o] defined by
1<;1+1<;14+2<;---<;n<;1<--<;1—1.
One can then defingyclically shifted Schubert celiss follows.

Definition 2.2. For each partition\ contained in & x (n — k) rectangle, and eache< [n], we define the
cyclically shifted Schubert cell

§ = {A € Gryn | I()) is the lexicographically minimal subset with respect4q such thatA;(, # 0}.

2.2 The positroid stratification of Gry,

Thepositroid stratificatiorof the Grassmannia@ry, ,, is obtained by taking the simultaneous refinement
of the n Schubert decompositions with respect to thshifted linear ordersc;. This stratification was
first considered by Postnikov [9], who showed that the stxegaonveniently described in terms®fass-
mann necklacesas well asdecorated permutatiorsnd I-diagrams Postnikov coined the terminology
positroid because the intersection of the positroid stratificatiothefreal Grassmannian with thetally
non-negative part of the Grassmanni@iry, ., )>o gives a cell decomposition §&ry, ,,) >0 (Whose cells
are calledpositroid cell.

Definition 2.3. [9, Definition 16.1] AGrassmann necklads a sequenc& = (I4,...,1,) of subsets
I. C [n] such that, fori € [n], if i € I; thenl, 1, = (I; \ {i}) U {j}, for somej € [n]; and ifi ¢ I, then
I;+1 = I;. (Here indiceg are taken modula.) In particular, we havél;| = - -- = |I,,|, which is equal
to somek € [n]. We then say tha is a Grassmann necklace bfpe (k,n).

Example 2.4. 7 = (1345, 3456,3456,4567,4567,1467,1478,1348) is an example of a Grassmann
necklace of typé4, 8).

Lemma 2.5. [9, Lemma 16.3] GiverA € Gryp,, letZ(A) = (I3, ..., I,) be the sequence of subsets in

[n] such that, fori € [n], I; is the lexicographically minimal subset 612]) with respect to the shifted
linear order<; such thatA, (4) # 0. ThenZ(A) is a Grassmann necklace of type n).

Thepositroid stratificatiorof Gy ,, is defined as follows.

Definition 2.6. LetZ = (I, ..., I,) be a Grassmann necklace of tyge n). Thepositroid stratumSz
is defined to be
St={AeGri,| Z(A)=1}.

Equivalently, each positroid stratum is an intersectiomadfyclically shifted Schubert cells, that is,

Sz = ﬂ Qg‘(Ii) ’
i=1

Grassmann necklaces are in bijection with tableaux calldihgrams

Definition 2.7. [9, Definition 6.1] Fixk, n. A I-diagram(\, D)y, of type(k,n) is a partition A con-
tained in ak x (n — k) rectangle together with a fillind : A — {0,+} of its boxes which has the
J-property: there is nd which has a+ above it and a+ to its left) (Here, “above” means above and
in the same column, and “to its left” means to the left and ia #ame row.)

In Figure 2 we give an example ofkdiagram.

) This forbidden pattern is in the shape of a backwatdand hence is denotefland pronounced “Le.”
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++]+

+o]+][+
olo|oO|Oo

Fig. 2: A Le-diagramL = (A, D) n.

2.3 The matroid stratification of Gry,,,

Definition 2.8. A matroidof rank k on the sefn] is a nonempty collectio C ([Z]) of k-element
subsets inn|, calledbaseof M, that satisfies thexchange axiom
ForanyI, J € M andi € I there existg € J such that(I \ {:}) U {j} € M.

Given an elementl € Gry, .., there is an associated matrdid 4 whose bases are thesubsetd C [n]
such thatAr(A) # 0.

Definition 2.9. Let M C ([Z]) be a matroid. Thenatroid stratunt , is defined to be
Sm={A€Gry,|Ar(A) #0ifandonly ifl € M}.

This gives a stratification afr ,, called thematroid stratificationor Gelfand-Serganova stratification

Remark 2.10. Clearly the matroid stratification refines the positroidattfication, which in turn refines
the Schubert decomposition.

3 The main result: network parameterizations from Go-diagrams

In this section we define certain tableaux calaldiagramsthen explain how to parameterize the Grass-
mannian using networks associated to Go-diagrams. Firstilielefine more general tableaux called
diagrams

3.1 Diagrams and networks

Definition 3.1. Let A be a partition contained in & x (n — k) rectangle. Adiagramin X is an arbitrary
filling of the boxes oA with pluses+, black stone®, and white stone®.

To each diagranD we associate a networKp as follows.

Definition 3.2. Let A be a partition with? boxes contained in & x (n — k) rectangle, and leD be a
diagram in)\. Label the boxes of from 1 to ¢, starting from the rightmost box in the bottom row, then
reading right to left across the bottom row, then right td befross the row above that, etc. Tfveeighted)
network Np associated td is a directed graph obtained as follows:

e Associate amnternal vertexo each+ and each®;

o After labeling the southeast border of the Young diagrarh tie numbers, 2, ..., n (from north-
east to southwest), associatbaundary vertexo each number;
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e From each internal vertex, draw an edge right to the neatestertex or boundary vertex;
e From each internal vertex, draw an edge down to the nearegértex or boundary vertex;

e Direct all edges left and down. After doing sopf the boundary vertices becorseurcesand the
remainingn — k boundary vertices beconsinks

e If e is a horizontal edge whose left vertex istavertex (respectively @-vertex) in box, assign
e the weighta; (respectivelyc;). We think ofa;, and ¢, as indeterminates, but later they will be
elements oK* andK respectively.

e If ¢is avertical edge, assignthe weightl.

Note that in general such a directed graph is not planar,aetlges may cross over each other without
meeting at a vertex. See Figure 3 for an example of a diagrahtsassociated network.

a12 a1 aio ag

_|_
_|_

+ @+ |+
O+ | @+
O+

Fig. 3: An example of a diagram and its associated network.

We now explain how to associateneight matrixto such a network.

Definition 3.3. Let Np be a network as in Definition 3.2. Lét= {i; < i2 < --- < ix} C [n] denote
the sources. IP is a directed path in the network, let P) denote the product of all weights alody If
P is the empty path which starts and ends at the same boundaexyee letw(P) = 1. If r is a source
ands is any boundary vertex, define

Wes =+ w(P),
P
where the sum is over all pati3fromr to s. The sign is chosen (uniquely) so that

Apnrugsy(Wp) = Zw(P), where
P

WD - (Wrs)

is thek x (n — k) weight matrix We make the convention that the row$165 are indexed by the sources
i1,...,1 from top to bottom, and its columns are indexed by, . . ., n from left to right.
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Example 3.4. The weight matrix associated to the network in Figure 3 is

1 a9 0 0 agaio 0 —agaio(an +c¢7) —agaio(aiiars + aiics + ag + crcs)
0 0 1 0 =—as O agCt agag + agcrcs

O O O 1 O O a4 —Qa4Cs

0O 0 0 O 0 1 0 as

3.2 Distinguished expressions

We now review the notion of distinguished subexpressioasngd2] and [8]. This definition will be
essential for defining Go-diagrams. We assume the reademigidr with the (strong) Bruhat ordet on
W = &,, and the basics of reduced expressions, as in [1].

Letw := sy, ...s;,, be areduced expression fore W. A subexpressior of w is a word obtained
from the reduced expression by replacing some of the factors with For example, consider a reduced
expression inSy, saysssss1S3s283. Thenssss 1s3so 1 is a subexpression 6fsos1535283. Given a
subexpressiom, we setv(;) to be the product of the leftmostfactors ofv, if £ > 1, andygy = 1.

Definition 3.5. [8, 2] Given a subexpression of a reduced expression = s;, s;, - .. s;,,,, We define

J\C,) = {/{ S {1, .. .,m} | V(k—1) < ’U(k)},
Iy ={ke{l,....m} [vg-1) = v},
J\., = {/{ S {1, .. .,m} | V(k—1) > U(k)}-

The expression is called non-decreasing if;;_1) < v(; forall j =1,...,m, e.g.Jg = .

Definition 3.6 (Distinguished subexpressiongp, Definition 2.3] A subexpression of w is called dis-
tinguished if we have
V() S UG—1) Si; forall j €{1,...,m}. (1)

In other words, if right multiplication by;, decreases the length of;_), then in a distinguished subex-
pression we must havg;) = v(;_1)si,-
We writev < w if v is a distinguished subexpressionvof

Definition 3.7 (Positive distinguished subexpressiangje call a subexpressionof w a positive distin-
guished subexpression (or a PDS for short) if

V(1) < V(j—1)Si; forall j € {1,...,m}. 2

In other words, it is distinguished and non-decreasing.
Lemma 3.8. [8] Given v < w and a reduced expression for w, there is a unique PD$., for v in w.

3.3 Go-diagrams

In this section we explain how to index distinguished sulbeggions by certain tableaux call&b-
diagrams which were introduced in [6]. Go-diagrams are fillings ofuvig diagrams by pluses, black
stones®, andwhite stone.

() 1n KW2, we used a slightly different convention and used klaoxes in place of-'s.



Network parameterizations for the Grassmannian 69

S5 | S4 83|82 |81 151141312 |11 15]121 9 |6 | 3
S6 | S5 | S4 | S3 | S2 1009|8716 14|11 8 | 5| 2
57|86 | S5 |54 |83 5141321 1310 714 |1

Fig. 4: The labeling of a the boxes of a partition by simple genesatgrand two reading orders.

Fix k andn. LetW), = (s1,52,...,8n_#,...,5,_1) be a parabolic subgroup F = &,,. Let W*
denote the set of minimal-length coset representativé® df/;,. Recall that alescenbf a permutation
7 is a positionj such thatr(j) > 7(j + 1). ThenW* is the subset of permutations &f, which have at
most one descent; and that descent must be in positierk.

It follows from [11] and [10] that elements of W* can be identified with partitions,, contained in a
k x (n— k) rectangle. More specifically, |€}* be the poset whose elements are the boxes.of &n — k)
rectangle; ifb; andb, are two adjacent boxes such thais immediately to the left or immediately above
b1, we have a cover relatiol < by in Q*. The partial order oif)” is the transitive closure of. Now
label the boxes of the rectangle with simple generatpras in the figure below. 16 is a box of the
rectangle, then let, denote its label by a simple generator. ket € W* denote the longest element
in W*. Then the set of reduced expressionsififcan be obtained by choosing a linear extensio®bf
and writing down the corresponding word in thgs. We call such a linear extensionre@ading order
two linear extensions are shown in the figure below. Adddibn given a partition\ contained in the
k x (n— k) rectangle (chosen so that the upper-left corner of its Yaliagram is aligned with the upper-
left corner of the rectangle), and a linear extension of theoset ofQ* comprised of the boxes o,
the corresponding word isy’s is a reduced expression of a minimal length coset reptatessw ¢ W.
The elementy € W* depends only on the partition, not the linear extension adineéduced expressions
of w can be obtained by varying the linear extension. Finalig, torrespondence is a bijection between
partitions),, contained in thé x (n — k) rectangle and elemenis € W*.

Definition 3.9. [6, Section 4] Fixk andn. Letw € W, letw be a reduced expression for, and letv be

a distinguished subexpressionvwef Thenw andw determine a partition\,, contained in & x (n — k)
rectangle together with a reading order of its boxes. Bwdiagramassociated tor andw is a filling
of A\, with pluses and black and white stones, such that: for daeh.J we place a white stone in the
corresponding box; for each € J3 we place a black stone in the corresponding boX.gf and for each
k € J we place a plus in the corresponding box\af.

Remark 3.10. By [6, Section 4], the Go-diagram associatedwand w does not depend ow, only
onw. Moreover, whether or not such a filling of a partition, is a Go-diagram does not depend on the
choice of reading order of the boxes)gf.

Definition 3.11. We define thetandard reading ordef the boxes of a partition to be the reading order
which starts at the rightmost box in the bottom row, then geaght to left across the bottom row, then

right to left across the row above that, then right to left@gs the row above that, etc. This reading order
is illustrated at the right of the figure below.

By default, we will use the standard reading order in thisquap
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Example 3.12.Letk = 3andn = 7, and letA = (4, 3,1). The standard reading order is shown at the
right of the figure below.

8483|8281 ‘ 8171615
S5 | 84|53 4 2
Sg 1

Then the following diagrams are Go-diagrams of shape

O]010|0 + OO+ ® +|+ O
0|00 +|O|+ +{O|O
O O +

They correspond to the expressionRssssss1s283S4, sglsallsassl, andlszsylsi11s4. The first and
second are positive distinguished subexpressions (Pxid)the third one is a distinguished subexpres-
sion (but not a PDS).

Remark 3.13. The Go-diagrams associated to PDS'’s are in bijection witliagrams, see [6, Section
4]. Note that the Go-diagram associated to a PDS containg phises and white stones. This is precisely
a I-diagram.

3.4 The main result

To state the main result, we now consider Go-diagrams (Htrary diagrams), the corresponding net-
works (Go-network}, and the corresponding weight matrices.

Definition 3.14. Let D be a Go-diagram contained infax (n — k) rectangle. We define a subsep

of the Grassmanniatyry, , by letting each variable, of the weight matrix (Definition 3.3) range over
all nonzero element&*, and letting each variable; of the weight matrix range over all elemeiifs We
call Rp thenetwork component associatedifo

We will not define the Deodhar decomposition of the Grassnamibut refer to [2, 3, 8] for detalils.

Theorem 3.15.Let D be a Go-diagram contained infax (n — k) rectangle. Suppose that hast pluses
andu black stones. TheR p is isomorphic to the corresponding Deodhar component, anghiticular

is isomorphic toqK*)! x K. Furthermore,Gry_, is the disjoint union of the network componeRts,
as D ranges over all Go-diagrams contained irkax (n — k) rectangle. In other words, each point in the
Grassmanniarg=r , can be represented uniquely by a weighted network assddiate Go-diagram.

Corollary 3.16. Every matrix can be represented by a unique weighted netasskciated to a Go-
diagram.

4 A characterization of Deodhar components by minors

In this section we characterize Deodhar components in theggrannian by a list of vanishing and non-
vanishing Plicker coordinates.



Network parameterizations for the Grassmannian 71

Definition 4.1. [6, Definition 5.4] LetW = &,,, letw = s;, ... s;,, be areduced expression farc W*
and chooser < w. This determines a Go-diagram of shape\ = \,,. Let] = I()). Itis not hard to
check thal = w{n,n—1,...,n — k+ 1}.

Let b be any box ofD. Note that the set of all boxes &f which are weakly southeast bfforms a
Young diagram\i; also the complement of" in \ is a Young diagram which we calp"t (see Example
4.2 below). By looking at the restriction of to the positions corresponding to boxes\§f, we obtained
a reduced expressiow' for some permutationi®, together with a distinguished subexpressigh for
some permutation®. Similarly, by using the positions corresponding to boXegt!, we obtainedvyt,
w™t, v, andvptt. When the bok is understood, we will often omit the subscript

If b contains a+, definel, = v™(w™)~'7 € (). If b contains a white or black stone, define
I, = vsy(w) 71 € ([z]).

Example 4.2. LetW = &7 andw = s,455525354565551525354 be a reduced expression far € W3,
Letv = sys511s41s55111s4 be a distinguished subexpression. 8o= (3,5,6,7,1,2,4) andv =
(2,1,3,4,6,5,7). We can represent this data by the pasgtand the corresponding Go-diagram:

S4 |83 |s2 |81 ® ++|O
S5 | S4 |83 | S2 ‘ O + +
S6 | S5 | S4 +O|0O

Letb be the box of the Young diagram which is in the second row angdébond column (counting from
left to right). Then the diagram below shows: the boxes'dfand \°"t; a reading order which puts the
boxes of\°"* after those of\!*; and the corresponding labeled Go-diagram. Using this iagcrder,
W = 5455595354, WO = 565551525354, VI® = $48511s4, andvOU® = 1s5511154.

out|out| out out 11109 | 8
out| in| in| in 715143
out| in| in 6 121

Theorem 4.3. Let D be a Go-diagram of shapecontained in & x (n — k) rectangle. LetA € Gry .
ThenA lies in the Deodhar componef, if and only if the following conditions are satisfied:

1. A, (A) = 0 for all boxes inD containing a white stone.

2. A, (A) # 0 for all boxes inD containing a+.

3. Ajn(A4) #0.

4. A;j(A) = 0for all k-subsets/ which are lexicographically smaller thaF(\).

Corollary 4.4. The Deodhar decomposition of the Grassmannian is a coargenfithe matroid stratifi-
cation: in other words, each Deodhar component is a unionatfoid strata.
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Remark 4.5. Theorem 4.3 implicitly gives an algorithm for determinitng tDeodhar component and
corresponding network of a point of the Grassmannian, glwea matrix representative or by a list of its
Plucker coordinates. The steps are as follows.

1. Find the lexicographically minimal nonzeroifeker coordinateA;. Then the Go-diagram has
shape\(I). Fix a reading order for this shape.

2. We determine how to fill each box, working in the readingeords follows. First check whether
the boxb is forced to contain a black stone. If nétmust contain a white stone&;;, = 0, andb
must contain a plus if\ ;) # 0. This process will completely determine the Go-diagram.

3. Given the Go-diagram, we know the underlying graph of thtevark. To determine the weights
on horizontal edges, work in the reading order again. ThiécRér coordinate ;) will only use
edge weights; (whenb contains a+) or ¢, (whenb contains a black stone) and weights and
¢y corresponding to boxds which are earlier tharb in the reading order. Thus, we may use the
Lindstrom-Gessel-Viennot Lemma recursively to determine eadajhivej or c;.
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