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Cyclic Sieving of Increasing Tableaux and
Small Schröder Paths

Oliver Pechenik†

Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA.

Abstract. An increasing tableau is a semistandard tableau with strictly increasing rows and columns. It is well known
that the Catalan numbers enumerate both rectangular standard Young tableaux of two rows and also Dyck paths. We
generalize this to a bijection between rectangular 2-row increasing tableaux and small Schröder paths. Using the
jeu de taquin for increasing tableaux of [Thomas–Yong ’09], we then present a new instance of the cyclic sieving
phenomenon of [Reiner–Stanton–White ’04].

Résumé. Un tableau croissant est un tableau semi-standard avec les lignes et les colonnes croissantes au sens strict.
Il est bien connu que les nombres de Catalan énumèrent les tableaux de Young standard rectangulaires de deux lignes
et aussi les chemins de Dyck. Nous généralisons ceci pour une bijection entre tableaux croissants rectangulaires á 2
lignes et petits chemins de Schröder. Utilisant le jeu de taquin de [Thomas–Yong ’09] pour tableaux croissants, nous
présentons ensuite une nouvelle instance du phénomène du crible cyclique de [Reiner–Stanton–White ’04].

Keywords: increasing tableaux, cyclic sieving phenomenon, K-promotion, Schröder path, Schröder number, non-
crossing partition

1 Introduction
An increasing tableau is a semistandard tableau such that all rows and columns are strictly increasing and
the set of entries is an initial segment of Z>0. For λ a partition of N , we write |λ| = N . We denote by
Inck(λ) the set of increasing tableaux of shape λ with maximum value |λ|−k. Similarly SYT(λ) denotes
standard Young tableaux of shape λ. Notice Inc0(λ) = SYT(λ). We routinely identify a partition λ with
its Young diagram; hence for us the notations SYT(m× n) and SYT(nm) are equivalent.

A small Schröder path is a planar path from the origin to (n, 0) that is constructed from three types of
line segment: upsteps by (1, 1), downsteps by (1,−1), and horizontal steps by (2, 0), so that the path never
falls below the horizontal axis and no horizontal step lies on the axis. The nth small Schröder number is
defined to be the number of such paths. A Dyck path is a small Schröder path without horizontal steps.

Our first result is an extension of the classical fact that Catalan numbers enumerate both Dyck paths
and rectangular standard Young tableaux of two rows, SYT(2× n). For T ∈ Inck(2× n), let maj(T ) be
the sum of all i in row 1 such that i+ 1 appears in row 2.
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Theorem 1.1 There are explicit bijections between Inck(2× n), small Schröder paths with k horizontal
steps, and SYT(n− k, n− k, 1k). This implies the identity

∑
T∈Inck(2×n)

qmaj(T ) = qn+
1
2 (k

2+k)

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q
. (1)

In particular, the total number of increasing tableaux of shape 2× n is the nth small Schröder number.

The “flag-shaped” standard Young tableaux of Theorem 1.1 were previously considered by R. Stanley
[Sta96] in relation to polygon dissections.

Suppose X is a finite set, Cn = 〈c〉 a cyclic group acting on X , and f ∈ Z[q] a polynomial. The triple
(X, Cn, f) has the cyclic sieving phenomenon [RSW04] if for all m, the number of elements of X fixed
by cm is f(ζm), where ζ is any primitive nth root of unity. D. White [Whi07] discovered a cyclic sieving
for 2 × n standard Young tableaux. For this, he used a q-analogue of the hook-length formula (that is, a
q-analogue of the Catalan numbers) and a group action by jeu de taquin promotion. B. Rhoades [Rho10,
Theorem 1.3] generalized this result from SYT(2×n) to SYT(m×n). Our main result is a generalization
of D. White’s result in another direction, from SYT(2× n) = Inc0(2× n) to Inck(2× n).

We first define K-promotion for increasing tableaux. Define the SE-neighbors of a box to be the (at
most two) boxes immediately below it or right of it. Let T be an increasing tableau with maximum
entry M . Delete the entry 1 from T , leaving an empty box. Repeatedly perform the following operation
simultaneously on all empty boxes until no empty box has a SE-neighbor: Label each empty box by the
minimal label of its SE-neighbors and then remove that label from the SE-neighbor(s) in which it appears.
If an empty box has no SE-neighbors, it remains unchanged. We illustrate the local changes in Figure 1.

i
j

7→ i
j

j
i

7→ i j i
i

7→ i
i
7→ i

i

Fig. 1: Local changes during K-promotion for i < j.

Notice that the number of empty boxes may change during this process. Finally we obtain the K-
promotion P(T ) by labeling all empty boxes by M + 1 and then subtracting one from every label. Figure
2 shows a full example of K-promotion.

1 2 4
3 4 5

7→ 2 4
3 4 5

7→ 2 4
3 4 5

7→ 2 4
3 5

7→ 2 4 5
3 5

7→ 1 3 4
2 4 5

Fig. 2: K-promotion.

Our definition of K-promotion is analogous to that of ordinary promotion, but uses the K-jeu de taquin
of H. Thomas–A. Yong [TY09] in place of ordinary jeu de taquin. (The ‘K’ reflects their original develop-
ment of K-jeu de taquin in application to K-theoretic Schubert calculus.) Observe that on standard Young
tableaux, promotion and K-promotion coincide.

We will need:
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Theorem 1.2 For all n and k, there is an action of the cyclic group C2n−k on T ∈ Inck(2× n), where a
generator acts by K-promotion.

In the case k = 0, Theorem 1.2 is implicit in work of M.-P. Schützenberger (cf. [?, ?]). We provide two
combinatorial proofs of Theorem 1.2, which we believe provide different insights. Finally we construct
the following cyclic sieving.

Theorem 1.3 For all n and k, the triple
(
Inck(2 × n), C2n−k, f

)
has the cyclic sieving phenomenon,

where

f(q) :=

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q

is the q-enumerator from Theorem 1.1.

Our proof of Theorem 1.3 is elementary. In contrast, all proofs [Rho10, ?] of B. Rhoades’ theorem for
standard Young tableaux use representation theory or geometry. (Also [PPR09], where the authors give
new proofs of the 2- and 3-row cases of B. Rhoades’ result, uses representation theory.) It is natural to
ask also for such proofs of Theorem 1.3. For k > 0, Theorem 1.2 does not generalize in the obvious
way to tableaux of more than 3 rows. We do not know a common generalization of our Theorem 1.3 and
B. Rhoades’ theorem.

This note is an extended abstract of [Pec12]. Here we omit or sketch most of the proofs. The organiza-
tion is as follows. In Section 2, we prove Theorem 1.1. We include an additional bijection (to be used in
Section 4) between Inck(2 × n) and certain noncrossing partitions that we interpret as generalized non-
crossing matchings. In Section 3, we develop a strengthening of Theorem 1.2 through combinatorics of
small Schröder paths. We also provide a counterexample to the analogous statement for 4-row increasing
tableaux. In Section 4, we use noncrossing partitions to give a second proof of Theorem 1.2 and to prove
Theorem 1.3.

2 Bijections and Enumeration
Proposition 2.1 There is an explicit bijection between Inck(2× n) and SYT(n− k, n− k, 1k).

Proof: Let T ∈ Inck(2 × n). The following algorithm produces a corresponding S ∈ SYT(n − k, n −
k, 1k). Observe that every value in {1, . . . , 2n− k} appears in T either once or twice. Let A be the set of
numbers that appear twice. Let B be the set of numbers that appear in the second row immediately right
of an element of A. Note |A| = |B| = k.

Let T ′ be the tableau of shape (n− k, n− k) formed by deleting all elements of A from the first row of
T and all elements of B from the second. The standard Young tableau S is given by appending B to the
first column. An example is shown in Figure 3.

This algorithm is reversible. Given the standard Young tableau S of shape (n − k, n − k, 1k), let B
be the set of entries below the first two rows. By inserting B into the second row of S while maintaining
increasingness, we reconstruct the second row of T . Let A be the set of elements immediately left of
an element of B in this reconstructed row. By inserting A into the first row of S while maintaining
increasingness, we reconstruct the first row of T . 2
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Corollary 2.2 For all n and k,

∑
T∈Inck(2×n)

qmaj(T ) = qn+
1
2 (k

2+k)

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q
.

2

Proof of Theorem 1.1: The bijection between Inck(2 × n) and SYT(n − k, n − k, 1k) is given by
Proposition 2.1. The q-enumeration (1) is exactly Corollary 2.2.

We now give a bijection between Inck(2 × n) and small Schröder paths with k horizontal steps. Let
T ∈ Inck(2 × n). For each integer j from 1 to 2n − k, we create one segment of a small Schröder path
PT . If j appears only in the first row, then the jth segment of PT is an upstep. If j appears only in the
second row of T , the jth segment of PT is a downstep. If j appears in both rows of T , the jth segment of
PT is horizontal. It is clear that the tableau T can be reconstructed from the small Schröder path PT , so
this operation gives a bijection. Thus increasing tableaux of shape (n, n) are counted by small Schröder
numbers. 2

1 2 4 5 6
2 3 6 7 8

(a) Increasing tableau T

1 4 5
2 6 8
3
7

(b) “Flag-shaped”
standard Young tableau

0 1 1 0 1 2 2 1 0

(c) Small Schröder path and its
height word

7

81

2

3

4 5

6

(d) Noncrossing partition

a

b

c d

e

f

(e) Polygon dissection

Fig. 3: A rectangular increasing tableau T ∈ Inc2(5, 5) with its corresponding standard Young tableau of
shape (3, 3, 1, 1), small Schröder path, noncrossing partition of {1, . . . , 8} with all blocks of size at least
two, and heptagon dissection.

The following bijection will play an important role in our proof of Theorem 1.3 in Section 4. A partition
of {1, . . . , N} is noncrossing if the convex hulls of the blocks are pairwise disjoint when the values
1, . . . , N are equally spaced around a circle with 1 in the upper left and values increasing counterclockwise
(cf. Figure 3(D)).
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Proposition 2.3 There is an explicit bijection between Inck(2× n) and noncrossing partitions of 2n− k
into n− k blocks all of size at least 2.

Proof: Let T ∈ Inck(2 × n). For each i in the second row of T , let si be the largest number in the first
row that is less than i and that is not sj for some j < i. Form a partition of 2n− k by declaring, for every
i, that i and si are in the same block. We see this partition has n− k blocks by observing that the largest
elements of the blocks are precisely the numbers in the second row of T that do not also appear in the first
row. Clearly there are no singleton blocks.

If the partition were not noncrossing, there would exist some elements a < b < c < d with a, c in a
block B and b, d in a distinct block B′. Observe that b must appear in the first row of T and c must appear
in the second row of T (not necessarily exclusively). We may assume c to be the least element of B that
is greater than b. We may then assume b to be the greatest element of B′ that is less than c. Now consider
sc, which must exist since c appears in the second row of T . By definition, sc is the largest number in the
first row that is less than c and that is not sj for some j < c. By assumption, b appears in the first row, is
less than c, and is not sj for any j < c; hence sc ≥ b. Since however b and c lie in distinct blocks, sc 6= b,
whence b < sc < c. This is impossible, since we took c to be the least element of B greater than b. Thus
the partition is necessarily noncrossing.

To reconstruct the increasing tableau, read the partition from 1 to 2n − k. Place the smallest elements
of blocks in only the first row, place the largest elements of blocks in only the second row, and place
intermediate elements in both rows. 2

The set Inck(2 × n) is also in bijection with (n + 2)-gon dissections by n − k − 1 diagonals. We do
not describe this bijection, as it is well known (cf. [Sta96]) and will not be used except in Section 4 for
comparison with previous results. The existence of a connection between increasing tableaux and polygon
dissections was first suggested in [?]. An example of all these bijections is shown in Figure 3.

Remark 2.1 A noncrossing matching is a noncrossing partition with all blocks of size two. Like Dyck
paths, polygon triangulations, and 2-row rectangular standard Young tableaux, noncrossing matchings are
enumerated by the Catalan numbers. Since increasing tableaux were developed as a K-theoretic analogue
of standard Young tableaux, it is tempting also to regard small Schröder paths, polygon dissections, and
noncrossing partitions without singletons as K-theory analogues of Dyck paths, polygon triangulations,
and noncrossing matchings, respectively. In particular, by analogy with [PPR09], it is tempting to think
of noncrossing partitions without singletons as “K-webs” for sl2, although their representation-theoretic
significance is unknown.

3 K-Promotion and K-Evacuation
In this section, we prove Theorem 1.2. Let max(T ) denote the largest entry in a tableau T . For a
rectangular tableau T , we write rot(T ) for the tableau formed by rotating 180 degrees and reversing
the alphabet, so that label x becomes max(T ) + 1 − x. We define K-evacuation E as in [TY09, §4] by
analogy with evacuation for standard Young tableaux, using K-jeu de taquin in place of ordinary jeu de
taquin. Define dual K-evacuation E∗ by E∗ := rot ◦ E ◦ rot. (This definition of E∗ only makes sense for
rectangular tableaux. For a tableau T of general shape λ, in place of applying rot, one should dualize λ
(thought of as a poset) and reverse the alphabet. We will not make any essential use of this more general
definition.)
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Towards Theorem 1.2, we first develop basic combinatorics of the above operators that are well-known
in the standard Young tableau case (cf. [?]). From these results, we observe that Theorem 1.2 follows
from the claim that rot(T ) = E(T ) for every T ∈ Inck(2× n). We first saw this approach in [?] for the
standard Young tableau case, although similar ideas appear in [?, ?, . . . ]; we are not sure where it first
appeared.

Finally, beginning at Lemma 3.3, we prove that for T ∈ Inck(2 × n), rot(T ) = E(T ). Here the
situation is more subtle than in the standard case. (For example, we will show that the claim is not
generally true for T a rectangular increasing tableau with more than 3 rows.) We proceed by careful
analysis of how rot, E , E∗, and P act on the corresponding small Schröder paths.

Remark 3.1 It is not hard to see that K-promotion is reversible, and hence permutes the set of increasing
tableaux.

Lemma 3.1 K-evacuation and dual K-evacuation are involutions,P◦E = E◦P−1, and for any increasing
tableau T , (E∗ ◦ E)(T ) = Pmax(T )(T ).

Before proving Lemma 3.1, we briefly recall the K-theory growth diagrams of [TY09, §2, 4], which
extend the standard Young tableau growth diagrams of S. Fomin (cf. [?, Appendix 1]). We will write [T ]j
for the subtableau of T formed by deleting all entries > j. For T ∈ Inck(λ), consider the sequence of
Young diagrams (shape([T ]j))0≤j≤|λ|−k. Note that this sequence of diagrams uniquely encodes T . We
draw this sequence of Young diagrams horizontally from left to right. Below this sequence, we draw, in
successive rows, the sequences of Young diagrams associated to Pi(T ) for 1 ≤ i ≤ |λ| − k. Hence each
row encodes the K-promotion of the row above it. We offset each row one space to the right. We will refer
to this entire array as the K-theory growth diagram for T . (There are other K-theory growth diagrams for
T that one might consider, but this is the only one we will need.) Figure 4 shows an example.

∅

∅

∅

∅

∅

∅

∅

∅

∅

Fig. 4: The K-theory growth diagram for the tableau T of Figure 3(A).
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We will write Y Dij for the Young diagram shape([Pi−1(T )]j−i). This indexing is nothing more than
imposing “matrix-style” or “English” coordinates on the K-theory growth diagram. For example in Figure
4, Y D58 denotes , the Young diagram in the fifth row from the top and the eighth column from the left.

Remark 3.2 [TY09, Proposition 2.2] In any 2 × 2 square
λ µ
ν ξ

of Young diagrams in a K-theory

growth diagram, ξ is uniquely and explicitly determined by λ, µ and ν. Similarly λ is uniquely and

explicitly determined by µ, ν and ξ. Furthermore these rules are symmetric, in the sense that if
λ µ
ν ξ

and
ξ µ
ν ρ

are both 2× 2 squares of Young diagrams in K-theory growth diagrams, then λ = ρ.

Proof of Lemma 3.1: Fix a tableau T ∈ Inck(λ). All of these facts are proven as in the standard case
(cf. [?, §5]), except one uses K-theory growth diagrams instead of ordinary growth diagrams. The proof
that K-evacuation is an involution appears in greater detail as [TY09, Theorem 4.1]. For rectangular
shapes, the fact that dual K-evacuation is an involution follows from the fact that K-evacuation is, since
E∗ = rot ◦ E ◦ rot.

Essentially by definition, the central column (the column containing the rightmost ∅) of the K-theory
growth diagram for T encodes the K-evacuation of the first row as well as the dual K-evacuation of the
last row. The first row encodes T and the last row encodes P |λ|−k(T ). Hence E(T ) = E∗(P |λ|−k(T )).

By the symmetry mentioned in Remark 3.2, one observes that the first row encodes the K-evacuation of
the central column and that the last row encodes the dual K-evacuation of the central column. This yields
E(E(T )) = T and E∗(E∗(P |λ|−k(T ))) = P |λ|−k(T ), showing that K-evacuation and dual K-evacuation
are involutions. Combining the above observations, yields (E∗ ◦ E)(T ) = P |λ|−k(T ).

Finally to show P ◦E = E ◦P−1, it is easiest to append an extra ∅ to the lower-right of the diagonal line
of ∅s that appears in the K-theory growth diagram. This extra ∅ lies in the column just right of the central
one. This column now encodes the K-evacuation of the second row. Hence by the symmetry mentioned
in Remark 3.2, the K-promotion of this column is encoded by the central column. Thus if S = P(T ), the
central column encodes P(E(S)). But certainly P−1(S) = T is encoded by the first row, and we have
already observed that the central column encodes E(T ). Therefore P(E(S)) = E(P−1(S)). 2

Let er(T ) be the least positive integer such that (E∗ ◦ E)er(T )(T ) = T . We call this number the
evacuation rank of T . Similarly we define the promotion rank pr(T ) to be the least positive integer such
that Ppr(T )(T ) = T .

Corollary 3.2 Let T be a increasing tableau. Then er(T ) divides pr(T ), pr(T ) divides max(T ) · er(T ),
and the following are equivalent:

(a) E(T ) = E∗(T ),

(b) er(T ) = 1,

(c) pr(T ) divides max(T ).

Moreover if T is rectangular and E(T ) = rot(T ), then E(T ) = E∗(T ). 2
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Thus to prove Theorem 1.2, it suffices to show that E(T ) = rot(T ) for every T ∈ Inck(2 × n). We
use the bijection between Inck(2 × n) and small Schröder paths from Theorem 1.1. These paths are
themselves in bijection with the sequence of their node heights, which we call the height word. Figure
3(C) shows an example. For T ∈ Inck(2 × n), we write PT for the corresponding small Schröder path
and ST for the corresponding height word.

Lemma 3.3 For T ∈ Inck(2×n), the ith letter of the height word ST is the difference between the lengths
of the first and second rows of the Young diagram shape([T ]i−1). 2

Lemma 3.4 Let T ∈ Inck(2× n). Then Prot(T ) is the reflection of PT across a vertical line and Srot(T )

is the word formed by reversing ST . 2

Lemma 3.5 Let T ∈ Inck(2× n) and M = 2n− k. Let xi denote the (M + 2− i)th letter of the height
word SPi−1(T ). Then SE(T ) = xM+1xM . . . x1.

Proof: By consideration of the K-theory growth diagram for T . 2

Lemma 3.6 Let T ∈ Inck(2× n).

(a) The word ST may be written in exactly one way as 0w10w3 or 0w11w20w3, where w1 is a sequence
of strictly positive integers that ends in 1 and contains no consecutive 1s, w2 is a (possibly empty)
sequence of strictly positive integers, and w3 is a (possibly empty) sequence of nonnegative integers.

(b) Let w−1 be the sequence formed by decrementing each letter of w1 by 1. Similarly, let w+
3 be formed

by incrementing each letter of w3 by 1.

If ST is of the form 0w10w3, then SP(T ) = w−1 1w+
3 0. If ST is of the form 0w11w20w3, then

SP(T ) = w−1 1w21w+
3 0. 2

For T ∈ Inck(2×n), take the first 2n− k+ 1 columns of the K-theory growth diagram for T . Replace
each Young diagram in the resulting array by the difference between the lengths of its first and second
rows. Figure 5 shows an example. We write aij for the number corresponding to the Young diagram
Y Dij . By Lemma 3.3, we see that the ith row of this array of nonnegative integers is exactly the first
2n − k + 2 − i letters of SPi−1(T ). Therefore we will refer to this array as the height growth diagram
for T , and denote it by hgd(T ). Observe that the rightmost column of hgd(T ) corresponds to the central
column of the K-theory growth diagram for T .

Lemma 3.7 In hgd(T ) for T ∈ Inck(2× n), we have for all j that a1j = aj,2n−k+1.

Proof: By induction on the length of the height word. 2

Corollary 3.8 In the notation of Lemma 3.5, ST = x1x2 . . . xM+1. 2

Proposition 3.9 Let T ∈ Inck(2× n). Then E(T ) = rot(T ).

Proof: By Corollary 3.8, ST = x1x2 . . . x2n−k+1. Hence Srot(T ) = x2n−k+1x2n−k . . . x1, by Lemma
3.4. However Lemma 3.5 says that also SE(T ) = x2n−k+1x2n−k . . . x1. By the bijective correspondence
between tableaux and height words, this yields E(T ) = rot(T ). 2
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0 1 1 0 1 2 2 1 0
0 1 1 2 3 3 2 1

0 1 2 3 3 2 1
0 1 2 2 1 0

0 1 1 0 1
0 1 1 2

0 1 2
0 1

0

Fig. 5: The height growth diagram hgd(T ) for the tableau T shown in Figure 3(A). The ith row shows
the first 10− i letters of SPi−1(T ). Lemma 3.7 says that row 1 is the same as column 9, read from top to
bottom.

This completes our first proof of Theorem 1.2. We will obtain an alternate proof in Section 4. We now
show a counterexample to the obvious generalization of Theorem 1.2 to increasing tableaux of more than
two rows.

Example 3.10 If T is the increasing tableau

1 2 4 7
3 5 6 8
5 7 8 10
7 9 10 11

, then P11(T ) =

1 2 4 7
3 4 6 8
5 6 8 10
7 9 10 11

. (The underscores

mark entries that differ between the two tableaux.) It can be verified that the promotion rank of this
tableau is 33.

Computer checks of small examples (including all with at most seven columns) did not identify such a
counterexample for T a 3-row rectangular increasing tableau.

4 Cyclic Sieving

Proof of Theorem 1.3: Recall we defined

f(q) :=

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q

to be the q-enumerator for Inck(2 × n) obtained in Theorem 1.1. Our strategy (modeled throughout on
[RSW04, §7]) is to explicitly evaluate f at roots of unity and compare the result with a count of increasing
tableaux. To count tableaux, we use the bijection with noncrossing partitions given in Proposition 2.3.
We will find that the symmetries of these partitions more transparently encode the promotion ranks of the
corresponding tableaux.
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Lemma 4.1 Let ζ be any primitive dth root of unity, for d dividing 2n− k. Then

f(ζ) =



( 2n−k
d )!

( k
d )!(

n−k
d )!(n−k

d −1)!
n
d

, if d|n

( 2n−k
d )!

( k+2
d −1)!(

n−k−1
d )!(n−k−1

d )!n+1
d

, if d|n+ 1

0, otherwise.

Proof: By explicit evaluation, as in [RSW04, §7]. 2

We will write π for the bijection of Proposition 2.3 from Inck(2×n) to noncrossing partitions of 2n−k
into n− k blocks all of size at least 2. In a noncrossing partition, there is at most one block whose convex
hull contains the center of the disk; we call such a block the central block. For Π a noncrossing partition
of N , we writeR(Π) for the noncrossing partition given by rotating Π clockwise by 2π/N .

Lemma 4.2 For any T ∈ Inck(2× n), π(P(T )) = R(π(T )). 2

It remains now to count noncrossing partitions of 2n − k into n − k blocks all of size at least 2 that
are invariant under rotation by 2π/d, and to show that we obtain the formula of Lemma 4.1. It is easy to
show for such a partition Π that d|n+ 1 if and only if Π has a central block and that d|n if and only if Π
has no central block.

Arrange the numbers 1, 2, . . . , n,−1, . . . ,−n counterclockwise at equally spaced points around a cir-
cle. Consider a partition of these points such that, for every block B, the set formed by negating all
elements of B is also a block. If the convex hulls of the blocks are pairwise nonintersecting, we call
such a partition a noncrossing Bn-partition or type-B noncrossing partition (cf. [Rei97]). There is an
obvious bijection between noncrossing partitions of 2n− k that are invariant under rotation by 2π/d and
noncrossing B(2n−k)/d-partitions. The needed enumerations of type-B noncrossing partitions may be
obtained from work of C. Athanasiadis, V. Reiner, and C. Savvidou [AR04, AS12]. 2

Lemma 4.2 yields a second proof of Theorem 1.2. We observe that under the reformulation of Lemma
4.2, Theorem 1.3 bears a striking similarity to Theorem 7.2 of [RSW04] which gives a cyclic sieving on
the set of all noncrossing partitions of 2n−k into n−k parts with respect to the same cyclic group action.

Additionally, under the correspondence mentioned in Section 2 between Inck(2 × n) and dissections
of an (n+ 2)-gon with n− k − 1 diagonals, Theorem 1.3 bears a strong resemblance to Theorem 7.1 of
[RSW04], which gives a cyclic sieving on the same set with the same q-enumerator, but with respect to
an action by Cn+2 instead of C2n−k. S.-P. Eu–T.-S. Fu [?] reinterpret the Cn+2-action as the action of a
Coxeter element on the k-faces of an associahedron. We do not know such an interpretation of our action
by C2n−k. In [RSW04], the authors note many similarities between their Theorems 7.1 and 7.2 and ask
for a unified proof. It would be very satisfying if such a proof could also account for our Theorem 1.3.
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