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On Kerov polynomials for Jack characters†
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Abstract. We consider a deformation of Kerov character polynomials, linked to Jack symmetric functions. It has been
introduced recently by M. Lassalle, who formulated several conjectures on these objects, suggesting some underlying
combinatorics. We give a partial result in this direction, showing that some quantities are polynomials in the Jack
parameter α with prescribed degree.

Our result has several interesting consequences in various directions. Firstly, we give a new proof of the fact that the
coefficients of Jack polynomials expanded in the monomial or power-sum basis depend polynomially in α. Secondly,
we describe asymptotically the shape of random Young diagrams under some deformation of Plancherel measure.

Résumé. On considère une déformation des polynômes de Kerov pour les caractères du groupe symétrique. Cette
déformation est liée aux polynômes de Jack. Elle a été récemment définie par M. Lassalle, qui a proposé plusieurs
conjectures sur ces objets, suggérant ainsi l’existence d’une combinatoire sous-jacente. Nous donnons un résultat
partiel dans cette direction, en montrant que certaines quantités sont des polynômes (dont on contrôle les degrés) en
fonction du paramètre de Jack α.

Notre résultat a des conséquences intéressantes dans des directions diverses. Premièrement, nous donnons une nou-
velle preuve de la polynomialité (toujours en fonction de α) des coefficients du développement des polynômes de
Jack dans la base monomiale. Deuxièmement, nous décrivons asymptotiquement la forme de grands diagrammes de
Young distribués selon une déformation de la mesure de Plancherel.
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1 Introduction
1.1 Polynomiality of Jack polynomials

In a seminal paper [9], H. Jack introduced a family of symmetric functions J (α)
λ depending on an addi-

tional parameter α called Jack polynomials. Up to multiplicative constants, for α = 1, Jack polynomials
coincide with Schur polynomials. Over the time, it has been shown that several results concerning Schur
polynomials can be generalized in a rather natural way to Jack polynomials (Section (VI,10) of I.G. Mac-
donald’s book [20] gives a few results of this kind).
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One of the most surprising features of Jack polynomials is that they have several equivalent classical
definitions, but none of them makes obvious the fact that the coefficients of their expansion on the mono-
mial basis are polynomials in α (by construction, they are only rational functions). This property has been
established by Lapointe and Vinet [16]. One of the result of this paper is a new proof of Lapointe-Vinet
theorem.
Theorem 1.1 (Lapointe and Vinet [16]) The coefficients of the expansion of Jack polynomials in the
monomial basis are polynomials in α.

This theorem is proved in Section 3.2. We believe that this new proof is interesting in itself, because it
relies on a very different approach to Jack polynomials.

To be comprehensive on the subject, let us mention that the coefficients of these polynomials are in fact
non-negative integers. This result had been conjectured by R. Stanley and I. Macdonald; see e.g. [20, VI,
equation (10.26?)]. It was proved by Knop and Sahi [15], shortly after Lapointe-Vinet’s paper. We are
unfortunately unable to prove this stronger result with our methods.

1.2 Dual approach
We will later define Jack character to be equal (up to some simple normalization constant) to the coeffi-
cient [pµ]Jλ in the expansion of the Jack polynomial Jλ in the basis of power-sum symmetric functions.
The idea of the dual approach is to consider Jack characters as a function of λ and not as a function of µ
as usual. In more concrete words, we would like to express the Jack character as a sum of some quanti-
ties depending on λ over some combinatorial set depending on µ (in Knop-Sahi’s result, it is roughly the
opposite).

Inspired by the case α = 1 (which corresponds to the usual characters of the symmetric groups),
Lassalle [18] suggested to express Jack characters in terms of, so called, free cumulants of the transition
measure of the Young diagram λ. This expression, called Kerov polynomials for Jack characters, involves
rational functions in α, which are conjecturally polynomials with non-negative integer coefficients in α
and β = 1 − α (see [18, Conjecture 1.2]); we refer to this as Lassalle’s conjecture. This suggests the
existence of a combinatorial interpretation. A result of this type holds true in the case α = 1, see [5].

In this paper, we prove a part of Lassalle’s conjecture, that is the polynomiality in α (but neither the
non-negativity, nor the integrity) of the coefficients.

Theorem 1.2 The coefficients of Kerov polynomials for Jack characters are polynomials in α with ratio-
nal coefficients.

This theorem with a precise bound on the degree of these polynomials is stated in Section 3.1. In this
extended abstract, we only give the guidelines of the proof.

1.3 Applications
Our bounds for degrees of coefficients of Kerov polynomials for Jack characters imply in particular that
some coefficients (corresponding to the leading term for some gradation) are independent on α. In Section
4, we use this simple remark to describe asymptotically the shape of random Young diagrams whose
distribution is a deformation of Plancherel measure.

Another consequence of our results is a uniform proof of the polynomiality of structure constants of
several meaningful algebras. This allows us to solve some conjectures of Matsumoto [21] and to give a
partial answer to the Matching-Jack conjecture of I. Goulden and D. Jackson [7]. Due to the lack of space,
we will not present these results in this extended abstract. They can be found in [4, Section 4].
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Outline of the paper. Section 2 gives all necessary definitions and background; in particular we recall
the notions of free cumulants and Kerov polynomials. In Section 3 we sketch the proof of Theorem 1.2
and Theorem 1.1. Finally, we state and prove our results on large Young diagrams in Section 4.

2 Jack characters and Kerov polynomials
2.1 Partitions and symmetric functions
We begin with a few classical definitions and notations.

A partition λ of n (denote it by λ ` n) is a non-increasing list (λ1, . . . , λ`) of positive integers of sum
equal to n. Then n is called the size of λ and denoted by |λ| and the number ` is the length of the partition
(denoted by `(λ)).

We also consider the graded ring of symmetric functions Sym. Recall that its homogeneous component
Symn of degree n admits several classical bases: the monomials (mλ)λ`n, the power-sums (pλ)λ`n, each
indexed by partitions of n. All the definitions can be found in [20, Chapter I].

Jack polynomials are symmetric functions indexed by partitions and depending on a parameter (α).
There exist several normalizations for Jack polynomials in the literature. We shall work with the one
denoted by J in the book of Macdonald [20, VI, (10.22)] and use the same notation as he does. For a fixed
value of the parameter α, the family (J

(α)
λ )λ`n forms a basis of Symn.

2.2 Jack characters
As power-sum symmetric functions (pρ)ρ`n form a basis of Symn, we can expand the Jack polynomial
J
(α)
λ in that base. For λ ` n, there exist (unique) coefficients θ(α)ρ (λ) such that

J
(α)
λ =

∑
ρ:

|ρ|=|λ|

θ(α)ρ (λ) pρ. (1)

Then we can define Jack characters by the formula:

Ch(α)µ (λ) = α−
|µ|−`(µ)

2

(
|λ| − |µ|+m1(µ)

m1(µ)

)
zµ θ

(α)

µ,1|λ|−|µ|
(λ),

where mi(µ) denotes the multiplicity of i in the partition µ and zµ = µ1µ2 · · · m1(µ)! m2(µ)! · · · .
In the case α = 1, Jack polynomials correspond, up to some normalization constants, to Schur symmet-

ric functions. The coefficients of the latter in the basis of the power-sum symmetric functions are known
to be equal to the irreducible characters of the symmetric groups; see [20, Section I,7] (this explains the
name characters in the general case, even if, except for α = 1/2, 1, 2, these quantities have no known
representation-theoretical interpretation). It means that Jack characters with parameter α = 1 correspond,
up to some numerical factors, to character values of the symmetric groups.

This normalization corresponds in fact to the one used by Kerov and Olshanski in [13]. These nor-
malized characters – following the denomination of Kerov and Olshanski – have plenty of interesting
properties; for example when considered as functions on the set of Young diagrams λ 7→ Ch

(1)
µ (λ), they

form a linear basis (when µ runs over the set of all partitions) of the algebra Λ? of shifted symmetric
functions , which is very rich in structure.

Jack characters have been first considered by M. Lassalle in [17]. Note that the normalization used here
is different that the one of these papers. The reason of this new choice of normalization will be clear later.
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λ

7→

T2, 12 (λ)

Fig. 1: Example of stretched Young diagram.

o1 = −2 i1 = −1.5

o2 = 0 i2 = 2.5

o3 = 3

Fig. 2: A generalized Young diagram Lwith
the corresponding set OL and IL.

2.3 Generalized Young diagrams and Kerov interlacing coordinates
In this section, we will see different ways of representing Young diagrams and even more general objects
related to them. Let us consider a zigzag line L going from a point (0, y) on the y-axis to a point (x, 0)
on the x-axis. We assume that every piece is either an horizontal segment from left to right or a vertical
segment from top to bottom. A Young diagram can be seen as such a zigzag line: just consider its border.
Therefore, we call these zigzag lines generalized Young diagrams.

We will be in particular interested in the following generalized Young diagrams. Let λ be a (general-
ized) Young diagram and s and t two positive real numbers. We denote by Ts,t(λ) the broken line obtained
by stretching λ horizontally by a factor s and vertically by a factor t (see Figure 1; we use french conven-
tion to draw Young diagrams). These anisotropic Young diagrams have been introduced by S. Kerov in
[11]. In the special case s = t, we denote by Ds(λ) = Ts,s(λ) the dilated Young diagram.

The content of a point of a plane is the difference of its x-coordinate and its y-coordinate. We denote
by OL the sets of contents of the outer corners of L, that is corners which are points of L connecting a
horizontal line on the left with vertical line on the bottom. Similarly, the set IL is defined as the contents
of the inner corners, that is corners which are points of L connecting a horizontal line on the right with
vertical line above. An example is given on Figure 2. The denomination inner/outer may seem strange,
but it refers to the fact that the box in the corner is inside or outside the diagram.

A generalized Young diagram can also be seen as a function on the real line. Indeed, if one rotates the
zigzag line counterclockwise by 45◦ and scale it by a factor

√
2 (so that the new x-coordinate corresponds

to contents), then it can be seen as the graph of a piecewise affine continuous function with slope ±1. We
denote this function by ω(λ). Therefore, we shall call continuous Young diagram a Lipshitz continuous
function ω with Lipshitz constant 1 such that ω(x) = |x| for |x| big enough . This notion will be used in
Section 4 to describe the limit shape of Young diagrams.

2.4 Polynomial functions on the set of Young diagrams
If k is a positive integer, one can consider the power sum symmetric function pk, evaluated on the differ-
ence of alphabets OL − IL. By definition, it is a function on generalized Young diagrams given by:

L 7→ pk(OL − IL) :=
∑
o∈OL

ok −
∑
i∈IL

ik.

As any symmetric function can be written (uniquely) in terms of pk, we can define f(OL − IL) for any
symmetric function f as follows. Expand f on the power-sum basis f =

∑
ρ aρpρ1 · · · pρ` for some
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family of scalars (aρ) indexed by partitions. Then, by definition

f(OL − IL) =
∑

ρ partition

aρpρ1(OL − IL) · · · pρ`(OL − IL).

This convenient notation is classical in lambda-ring calculus.
Consider the set of functions {λ 7→ f(OL − IL)}, where f describes the set of symmetric functions.

This is a subalgebra of the algebra of functions on the set of all Young diagrams. Following S. Kerov and
G. Olshanski, we shall call it the algebra of polynomial functions and denote it by Λ?.

V. Ivanov and G. Olshanski [8, Corollary 2.8] have shown that the normalized characters (λ 7→ Ch
(1)
µ (λ))µ

form a linear basis of this algebra and (λ 7→ pk(Oλ − Iλ))k≥2 forms an algebraic basis of Λ? (for all di-
agrams λ, one has p1(Oλ − Iλ) = 0). This algebra admits several other characterization: for instance it
corresponds to the algebra of shifted symmetric functions (see [8, Section 1 and 2]).

All this has a natural extension for a general parameter α.
We say that F is an α-polynomial function on the set of (generalized) Young diagrams if

λ 7→ F (T√α−1,
√
α(λ))

is a polynomial function. The ring of α polynomial functions is denoted by Λ
(α)
? . Then (λ 7→ Ch

(α)
µ (λ))µ

forms a linear basis of Λ
(α)
? . This is a consequence of a result of M. Lassalle [17, Proposition 2].

Remark 1 Lassalle’s result is in fact formulated in terms of shifted symmetric functions, but as mentioned
above, it is proved in [8, Section 1 and 2] that they correspond to polynomial functions.

Fact 2 With the definitions above, it should be clear that polynomial functions are defined on generalized
Young diagrams. They can in fact also be canonically extended to continuous Young diagrams; see [1,
Section 1.2]. This will be useful in Section 4.

2.5 Transition measure and free cumulants
S. Kerov [10] introduced the notion of transition measure of a Young diagram. This probability measure
µλ associated to λ is defined by its Cauchy transform

Gµλ(z) =

∫
R

dµλ(x)

z − x
=

∏
i∈Iλ z − i∏
o∈Oλ z − o

.

Its moments are hk(Oλ − Iλ), where hk is the complete symmetric function of degree k, hence they are
polynomial functions on the set of Young diagrams; we will denote them by M (1)

k .
In Voiculescu’s free probability it is very convenient to associate to a probability measure µ a sequence

of numbers (Rk(µ))k≥1 called free cumulants [26]. The free cumulants of the transition measure of
Young diagrams appeared first in the work of P. Biane [1] and play an important role in the asymptotic
representation theory. As explained by M. Lassalle (look at the case α = 1 of [18, Section 5]), they can
be expressed as

R
(1)
k (λ) := Rk(µλ) = e?k(Oλ − Iλ)

for some homogeneous symmetric function e?k of degree k. Note also that (e?k)k as well as complete
symmetric functions (hk)k are algebraic basis of symmetric functions and, hence (R

(1)
k )k≥2 as well as
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(M
(1)
k )k≥2 are algebraic basis of ring of polynomial functions on the set of Young diagrams (R(1)

1 = M
(1)
1

is the null function).

Fact 3 It is easy to see that, as hk and e?k are homogeneous symmetric functions, the corresponding
polynomial functions M (1)

k and R(1)
k are compatible with dilations. Namely

M
(1)
k

(
Ds(λ)

)
= skM

(1)
k

(
λ
)
; R

(1)
k

(
Ds(λ)

)
= skR

(1)
k

(
λ
)
.

Using the relevant definitions, the α-anisotropic moments and free cumulants defined by

M
(α)
k (λ) = M

(1)
k

(
T√α,

√
α−1(λ)

)
,

R
(α)
k (λ) = R

(1)
k

(
T√α,

√
α−1(λ)

)
are α-polynomial and the families (M

(α)
k )k≥2 and (R

(α)
k )k≥2 are two algebraic basis of the algebra Λ?(α).

2.6 Kerov polynomials

Recall that Jack characters Ch(α)µ are α-polynomial functions hence can be expressed in terms of the two
algebraic bases above.

Definition-Proposition 2.1 Let µ be a partition and α > 0 be a fixed real number. There exist unique
polynomials L(α)

µ and K(α)
µ such that, for every λ,

Ch(α)µ (λ) = L(α)
µ

(
M

(α)
2 (λ),M

(α)
3 (λ), · · ·

)
,

Ch(α)µ (λ) = K(α)
µ

(
R

(α)
2 (λ), R

(α)
3 (λ), · · ·

)
.

The polynomials K(α)
µ have been introduced by S. Kerov in the case α = 1 [12] and by M. Lassalle in the

general case [18]. Once again, we emphasize that our normalizations are different from his.
From now on, when it does not create any confusion, we suppress the superscript (α).
We present a few examples of polynomials Kµ. This data has been computed using the one given in

[18, page 2230]

K(1) = R2,

K(2) = R3 + γR2,

K(3) = R4 + 3γR3 + (1 + 2γ2)R2,

K(4) = R5 + γ(6R4 +R2
2) + (5 + 11γ2)R3 + (7γ + 6γ3)R2,

K(2,2) = R2
3 + 2γR3R2 − 4R4 + (γ2 − 2)R2

2 − 10γR3 − (6γ2 + 2)R2.

where we set γ = 1−α√
α

. A few striking facts appear on these examples:
• All coefficients are polynomials in the auxiliary parameter γ: the sketch of the proof of this fact

will be presented in the next section with explicit bounds on the degrees.
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• For one part partition, polynomials K(r) have non-negative coefficients. We are unfortunately un-
able to prove this statement, which is a more precise version of [18, Conjecture 1.2]. A similar
conjecture holds for several part partitions, see [18, Conjecture 1.2].

Remark 4 This facts explain our changes of normalization. In Lassalle’s work, the non-negativity of the
coefficients is hidden: he has to use two variables α and β = 1− α and choose a “natural” way to write
all quantities in terms of α and β. Using our normalizations and the parameter γ, the non-negativity of
the coefficients appears directly.

3 Polynomiality
3.1 Main result
Theorem 3.1 The coefficient of Mρ in Jack character polynomial Lµ is a polynomial in γ of degree
smaller or equal to

min
(
|µ|+ `(µ)− |ρ|, |µ| − `(µ)− (|ρ| − 2`(ρ))

)
.

Moreover, it has the same parity as the integer |µ|+ `(µ)− |ρ|.
The same is true for the coefficient of Rρ in Kµ.

We do not prove this theorem in this extended abstract. The proof is of course available in the long
version of the paper [4, Section 3]. Here, we are going to present a guidelines of this proof.

The difficulty is that the proof of the existence of the polynomials Lµ and Kµ (Proposition 2.1) is not
constructive. However, M. Lassalle gives an algorithm to compute the polynomial Kµ [18, Section 9],
but his algorithm involves an induction on the size of the partition |µ|. The coefficients of Kµ are the
solutions of an overdetermined linear system involving the coefficients of Kµ′ , for some partitions µ′

with |µ′| < |µ|. His algorithm can be easily adapted to Lµ [4, Section 3.2].
Our proof relies on this work and on the two following important facts:
• the linear system computing the coefficients of Lµ contains a triangular subsystem (this is not true

with Kµ);
• with our normalization of Jack characters and anisotropic moments, the diagonal coefficients of this

linear subsystem are independent of γ (and hence invertible in Q[γ]).
The polynomiality in γ follows from these two facts. To obtain the bound on the degree, one has to

look carefully at the degrees of the coefficients of the linear system.

Recall that our normalization is different from the one used by M. Lassalle. After a simple rewriting
game [4, Section 3.6], we can see that Theorem 3.1 implies that the coefficients of Lµ and Kµ with
Lassalle’s normalizations are polynomials in α (that is the statement of Theorem 1.2).

3.2 Lapointe-Vinet theorem
In this section, we prove that θµ(λ) is a polynomial in α. This result was already known (see Introduction),
but in our opinion it illustrates that Lassalle’s approach to Jack polynomials is relevant.

To deduce this from the results above, one has to see how Mk(λ) depends on α.

Lemma 3.2 Let k ≥ 2 be an integer and λ be a partition. Then
√
α
k−2

Mk(λ) is a polynomial in α with
integer coefficients.
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Proof: We use induction over |λ|. Let o = (x, y) be an outer corner of λ, we denote by λ(o) the diagram
obtained from λ by adding a box at place o. Comparing the corner of λ(o) and λ, we get that:

Oλ(o) − Iλ(o) = Oλ − Iλ + {x− (y + 1)}+ {x+ 1− y} − {x− y}

(for readers not used to λ-ring, this equality can be understood as equality between formal sums of ele-
ments in the set). After dilatation, we get

OT√
α,
√
α−1 (λ(o)) − IT√

α,
√
α−1 (λ(o)) = OT√

α,
√
α−1 (λ) − IT√

α,
√
α−1 (λ) + {zo −

1√
α
}+ {zo + α} − {zo},

and zo =
√
αx− y/

√
α is the content of the considered corner in T√α,√α−1(λ).

By a standard λ-ring computations (see [18, Proposition 8.3]), this yields

Mk(λ(o))−Mk(λ) =
∑

r≥1,s,t≥0,
2r+s+t≤k

zk−2r−s−to

(
k − t− 1

2r + s− 1

)(
r + s− 1

s

)
(−γ)

s
Mt(λ),

which can be rewritten as

√
α
k−2

Mk(λ(o))−
√
α
k−2

Mk(λ) =
∑

r≥1,s,t≥0,
2r+s+t≤k

αr(
√
αzo)

k−2r−s−t

(
k − t− 1

2r + s− 1

)(
r + s− 1

s

)
(α− 1)

s√
α
t−2

Mt(λ).

But
√
αzo = αx− y is a polynomial in α with integer coefficients. Thus the induction is immediate. 2

Now we write, for µ, λ ` n,

zµθµ(λ) = α
|µ|−`(µ)

2 Chµ(λ) =
∑
ρ

α
|µ|−`(µ)−(|ρ|−2`(ρ))

2 aµρ

 ∏
i≤`(ρ)

√
α
ρi−2

Mρi(λ)

 .

The quantities α
|µ|−`(µ)−(|ρ|−2`(ρ))

2 aµρ and
√
α
ρi−2Mρi(λ) are polynomials in α (by Theorem 3.1 and

Lemma 3.2), hence θµ(λ) is a polynomial in α, which proves Theorem 1.1.

3.3 Gradation
Looking at Theorem 3.1 it makes natural to consider some gradations on Λ

(α)
? . This structure will also be

useful in the next section.

The ring Λ
(α)
? of α-polynomial functions can be endowed with a gradation by deciding that Mk is a

homogeneous function of degree k: as (Mk)k≥2 is an algebraic basis of Λ
(α)
? , any choice of degree for

Mk (for all k ≥ 2) defines uniquely a gradation on Λ
(α)
? . Then Rk is also a homogeneous function of

degree k, thanks to the moment-free cumulant relations, see e.g. [1, Section 2.4].
Theorem 3.1 shows that Chµ has at most degree |µ| + `(µ) (this has also been proved by M. Lassalle

[18, Proposition 9.2 (ii)]). Note that Chµ is not homogeneous in general. Moreover, its component of
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degree |µ| + `(µ) does not depend on α. As this dominant term is known in the case α = 1 (see for
example [24, Theorem 4.9]), one obtains the following result (which extends [18, Theorem 10.2]):

Chµ =

`(µ)∏
i=1

Rµi+1 + smaller degree terms.

In particular, Chµ has exactly degree |µ|+ `(µ).
Consider the subspace V≤d ⊂ Λ

(α)
? of elements of degree less or equal to d. Its dimension is the number

of partitions ρ of size less or equal to d with no parts equal to 1. By removing 1 from every part of ρ, we
see that this is also the number of partitions µ such that |µ|+ `(µ) ≤ d. But the latter index the functions
Chµ lying in V≤d. Hence,

V≤d = Vect
(
{Chµ, |µ|+ `(µ) ≤ d}

)
and the degree of an element in Λ

(α)
? can be determined as follows:

deg

(∑
µ

aµChµ

)
= max
µ:aµ 6=0

|µ|+ `(µ). (2)

Remark 5 The algebra Λ
(α)
? admits other relevant gradations, see [4, Sections 3.5 and 3.8].

4 Application: asymptotics of large Young diagrams
We consider the following deformation of the Plancherel measure P(α)

n (λ) = αnn!

j
(α)
λ

, where j(α)λ is the

following deformation of the square of the hook products:

j
(α)
λ =

∏
2∈λ

(αa(2) + `(2) + 1)(αa(2) + `(2) + α). (3)

Here, a(2) and `(2) are respectively the arm and leg length of the box as defined in [20, Chapter I]. The
probability measure P(α)

n on Young diagrams of size n has appeared recently in several research papers
[3, 6, 23, 21] and is presented as an important area of research in Okounkov’s survey on random partitions
[22, § 3.3]. When α = 1, it specializes to the well-known Plancherel measure for the symmetric groups.

The following property, which corresponds to the case π = (1n) in [21, Equation (8.4)], characterizes
the Jack-Plancherel measure:

EP(α)
n

(θ(α)µ (λ)) = δµ,1n ,

where λ is a random variable distributed according to P(α)
n .

Using the definition of Chµ we have:

EP(α)
n

(Chµ) =

{
n(n− 1) · · · (n− k + 1) if µ = 1k for some k ≤ n,
0 otherwise.

As Chµ is a linear basis of Λ
(α)
? , it implies the following lemma (which is an analogue of [23, Theorem

5.5] with another gradation).
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Lemma 4.1 Let F be an α-polynomial function. Then EP(α)
n

(F ) is a polynomial in n of degree at most
deg(F )/2.

Proof: It is enough to verify this lemma on the basis Chµ because of equation (2). But in this case
EP(α)

n
(F ) is explicit (see formula above) and the lemma is obvious (recall that deg(Chµ) = |µ| + `(µ);

see Section 3.3). 2

Let (λn)n≥1 be a sequence of random partitions, where λn has distribution P(α)
n . In the case α = 1,

it has been proved in 1977 separately by Logan and Shepp [19] and Kerov and Vershik [14] that, in
probability,

lim
n→∞

∥∥ω(D1/
√
n(λn))− Ω

∥∥ = 0, (4)

where Ω is the limit shape given explicitly as follows:

Ω(x) =

{
|x| if |x| ≥ 2;
2
π

(
x · arcsin x

2 +
√

4− x2
)

otherwise.

Recall from Section 2.3 that Ds(λ) is the Young diagram λ dilated by a factor s and ω(λ) is by defini-
tion the function whose graphical representation is the border of λ, rotated by 45◦ (see Section 2.3) and
stretched by

√
2.

In the general α case, we have the following weak convergence result:

Proposition 4.2 For any 1-polynomial function F ∈ Λ
(1)
? , when n tends to infinity, one has

F
(
T√

α/n,1/
√
nα

(λn)
) P(α)

n−−−→ F (Ω),

where
P(α)
n−−−→ means convergence in probability.

Proof: As (R
(1)
k )k≥2 is an algebraic basis of Λ

(1)
? , it is enough to prove the proposition for any R(1)

k .
Let µ be partition. As mentioned at the beginning of the section, one has:∏

i≤`(µ)

R
(α)
µi+1 = Chµ + terms of degree at most |µ|+ `(µ)− 1. (5)

Together with Lemma 4.1 and the formula for EP(α)
n

(Chµ), this implies:

EP(α)
n

 ∏
i≤`(µ)

R
(α)
µi+1

 =

{
n(n− 1) · · · (n− k + 1) +O(nk−1) if µ = 1k for some k;

o(n
|µ|+`(µ)

2 ) otherwise.

In particular, one has that

EP(α)
n

(
R

(α)
k (D1/

√
n(λn))

)
=

1

nk/2
EP(α)

n
(R

(α)
k ) = δk,2 +O

(
1√
n

)
;

VarP(α)
n

(
R

(α)
k (D1/

√
n(λn))

)
=

1

nk

(
EP(α)

n

(
(R

(α)
k )2

)
− EP(α)

n
(R

(α)
k )2

)
= O

(
1

n

)
.



On Kerov polynomials for Jack characters 549

Thus, for each k, R(α)
k (D1/

√
n(λn)) converges in probability towards δk,2. But, by definition

R
(α)
k (D1/

√
n(λn)) = R

(1)
k

(
T√

α/n,1/
√
nα

(λn)
)

and (δk,2)k≥2 is the sequence of free cumulants of the continuous diagram Ω (see [2, Section 3.1]), i.e.
δk,2 = R

(1)
k (Ω). 2

Roughly speaking, Proposition 4.2 means that, the stretched Young diagram T√
α/n,1/

√
nα

(λn) con-
verges weakly towards Ω (in probability). So this result already means that the considered diagrams admit
some limit shape.

However, it would be desirable to obtain a result with uniform convergence, which is a more natural
notion of convergence. This can be done thanks to the following lemma.

Lemma 4.3 There exists a constant C such that

lim
n→∞

P
[
max

(
c(λn)√
n

;
r(λn)√

n

)
≤ C

]
= 1,

where, for each n, the diagram λn is chosen randomly with distribution P(α)
n and r(λn) and c(λn) are

respectively its numbers of rows and columns.

The proof of this lemma is quite technical and relies on the explicit formula (3) for P(α)
n . It can be

found in [4, Section 6.4]. We can now state the uniform convergence result.

Theorem 4.4 For each n, let λn be a random Young diagram of size n distributed with α-Plancherel
measure. Then, in probability,

lim
n→∞

∥∥∥ω(T√
α/n,1/

√
nα

(λn)
)
− Ω

∥∥∥ = 0.

Proof: It follows from Proposition 4.2 and Lemma 4.3 by the same argument as the one given in [8,
Theorem 5.5]. 2

The idea of using polynomial functions to study the asymptotic shape of Young diagrams has been
developped by S. Kerov (see [8]). In the case α = 1, he gave more precise result that what we have
here: he proved that for any polynomial function F , the quantity F (λn) has Gaussian fluctuations. A
better understanding of polynomials Kµ could lead to a proof of a similar phenomena in the general α
case, using the ideas introduced in [25]. Let us mention the existence of a partial result (corresponding to
F = Ch(2)) obtained by J. Fulman [6, Theorem 1.2] by another method.
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