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Extending the parking space
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Abstract. The action of the symmetric group Sn on the set Parkn of parking functions of size n has received a great
deal of attention in algebraic combinatorics. We prove that the action of Sn on Parkn extends to an action of Sn+1.
More precisely, we construct a graded Sn+1-module Vn such that the restriction of Vn to Sn is isomorphic to Parkn.
We describe the Sn-Frobenius characters of the module Vn in all degrees and describe the Sn+1-Frobenius characters
of Vn in extreme degrees. We give a bivariate generalization V

(`,m)
n of our module Vn whose representation theory

is governed by a bivariate generalization of Dyck paths. A Fuss generalization of our results is a special case of this
bivariate generalization.

Résumé. L’action du groupe symétrique Sn sur l’ensemble Parkn des fonctions de stationnement de longueur n a
reçu beaucoup d’attention dans la combinatoire algébrique. Nous démontrons que l’action de Sn sur Parkn s’étend
à une action de Sn+1. Plus précisément, nous construisons un gradué Sn+1-module Vn telles que la restriction
de Sn est isomorphe à Parkn. Nous décrivons la Sn-Frobenius caractères des modules Vn à tous les degrés et
décrivent le Sn+1-Frobenius caractères de Vn en degrés extrêmes. Nous donnons une généralisation bivariée V

(`,m)
n

de notre module Vn dont la représentation théorie est régi par une généralisation bivariée des chemins de Dyck. Une
généralisation Fuss de nos résultats est un cas particulier de cette généralisation bivariée.
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1 Introduction
This paper is about extending the visible permutation action of Sn on the space Parkn spanned by parking
functions of size n to a hidden action of the larger symmetric group Sn+1. The Sn+1-module we construct
will be a subspace of the coordinate ring of the reflection representation of type An and will inherit
the polynomial grading of this coordinate ring. Using statistics on Dyck paths, we will give an explicit
combinatorial formula for the graded Sn-Frobenius character of our module and will describe the extended
Sn+1-Frobenius character in extreme degrees.

As far as the authors know, this is the first example and proof of an extension of Parkn to Sn+1 an
Sn+1-module.

We remark that our result is the ‘best possible’ in two senses. First, it is not always possible to extend
Parkn to an Sn+2-module; for example, the action of S4 on Park4 does not extend to an action of S6.
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Also, from a combinatorial point of view, one may be interested in extending the action of Sn on Parkn
to a permutation action of the larger symmetric group Sn+1. Our extended module is graded, but is not
a permutation module. However, it is impossible to extend the action of S4 on Park4 to a permutation
action of S5.

2 Background and Main Results
A length n sequence (a1, . . . , an) of positive integers is called a parking function of size n if its nonde-
creasing rearrangement (b1 ≤ · · · ≤ bn) satisfies bi ≤ i for all i. Parking functions were introduced
by Konheim and Weiss [KW66] in the context of computer science, but have seen much application in
algebraic combinatorics with connections to Catalan combinatorics, Shi hyperplane arrangements, diago-
nal coinvariant rings, and rational Cherednik algebras. The set of parking functions of size n is famously
counted by (n + 1)n−1. The C-vector space Parkn spanned by the set of parking functions of size n
carries a natural permutation action of the symmetric group Sn on n letters:

w.(a1, . . . , an) = (aw(1), . . . , aw(n)) (1)

for w ∈ Sn and (a1, . . . , an) ∈ Parkn.
A partition λ of a positive integer n is a weakly decreasing sequence λ = (λ1 ≥ · · · ≥ λk) of

nonnegative integers which sum to n. We write λ ` n to mean that λ is a partition of n and define
|λ| := n. We call k the length of the partition λ. The Ferrers diagram of λ consists of λi left justified
boxes in the ith row from the top (‘English notation’). If λ is a partition, we define a new partition mult(λ)
whose parts are obtained by listing the (positive) part multiplicities in λ in weakly decreasing order. For
example, we have that mult(4, 4, 3, 3, 3, 1, 0, 0) = (3, 2, 2, 1).

We will make use of two partial orders on partitions in this paper. The first partial order is Young’s
lattice with relations given by λ ⊆ µ if λi ≤ µi for all i ≥ 1 (where we append an infinite string of zeros
to the ends of λ and µ so that these inequalities make sense). Equivalently, we have that λ ⊆ µ if and only
if the Ferrers diagram of λ fits inside the Ferrers diagram of µ. Dominance order on partitions is defined
by λ � µ if for all i ≥ 1 we have the inequality of partial sums λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi (where we
again append an infinite string of zeros to the ends of λ and µ). Observe that either of the relations λ ⊆ µ
or λ � µ imply that |λ| ≤ |µ|.

For a partition λ = (λ1, . . . , λk) ` n, we let Sλ denote the Young subgroup Sλ1 × · · ·×Sλk of Sn. We
denote by Mλ the coset representation of Sn given by Mλ := IndSnSλ (1Sλ) ∼=Sn CSn/Sλ and we denote
by Sλ the irreducible representation of Sn labeled by the partition λ.

LetRn denote the C-vector space of class functions Sn → C. Identifying modules with their characters,
the set {Sλ : λ ` n} forms a basis of Rn. The graded vector space R :=

⊕
n≥0Rn attains the structure

of a C-algebra via the induction product Sλ ◦ Sµ := Ind
Sn+m

Sn×Sm(Sλ ⊗C S
µ), where λ ` n and µ ` m.

We denote by Λ the ring of symmetric functions (in an infinite set of variables X1, X2, . . . , with co-
efficients in C). The C-algebra Λ is graded and we denote by Λn the homogeneous piece of degree n.
Given a partition λ, we denote the corresponding Schur function by sλ and the corresponding complete
homogeneous symmetric function by hλ.

The Frobenius character is the graded C-algebra isomorphism Frob : R → Λ induced by setting
Frob(Sλ) = sλ. It is well known that we have Frob(Mλ) = hλ. Generalizing slightly, if V =⊕

k≥0 V (k) is a graded Sn-module, define grFrob(V ; q) ∈ Λ⊗C C[[q]] to be the formal power series in
q with coefficients in Λ given by grFrob(V ; q) :=

∑
k≥0 Frob(V (k))qk.
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Fig. 1: A Dyck path of size 6.

A Dyck path of size n is a lattice path D in Z2 consisting of vertical steps (0, 1) and horizontal steps
(1, 0) which starts at (0, 0), ends at (n, n), and stays weakly above the line y = x. A maximal continguous
sequence of vertical steps in D is called a vertical run of D.

We will associate two partitions to a Dyck path D of size n. The vertical run partition λ(D) ` n
is obtained by listing the (positive) lengths of the vertical runs of D in weakly decreasing order. For
example, if D is the Dyck path in Figure 1, then λ(D) = (3, 2, 1). The area partition µ(D) is the
partition of length n whose Ferrers diagram is the set of boxes to the upper left of D in the n× n square
with lower left coordinate at the origin. For example, if D is the Dyck path of size 6 in Figure 1, then
µ(D) = (5, 1, 1, 1, 0, 0). The boxes in the Ferrers diagram of µ(D) are shaded. We define the area
statistic(i) on Dyck paths by area(D) = |µ(D)|. For the Dyck path in our running exampe, area(D) = 8.
By construction, we have that mult(µ(D)) = λ(D) for any Dyck path D of size n.

Dyck paths of size n can be used to obtain a decomposition of Parkn as a direct sum of coset modules
Mλ. In particular, let D be a Dyck path of size n. A labeling of D assigns each vertical run of D to a
subset of [n] := {1, 2, . . . , n} of size equal to the length of that vertical run such that every letter in [n]
appears exactly once as a label of a vertical run. Figure 1 shows an example of a labeled Dyck path of
size 6, where the subsets labeling the vertical runs are placed just to the right of the runs.

The set of labeled Dyck paths of size n carries an action of Sn given by label permutation. There is an
Sn-equivariant bijection from the set of labeled Dyck paths D of size n to parking functions (a1, . . . , an)
of size n given by letting ai be one greater than the x-coordinate of the vertical run of D labeled by i. For
example, the labeled Dyck path in Figure 1 corresponds to the parking function (2, 6, 1, 2, 1, 2) ∈ Park6.
Since any fixed labeled Dyck path of size D generates a cyclic Sn-module isomorphic to Mλ(D), it is
immediate that the parking space Parkn decomposes into coset representations as

Parkn ∼=Sn

⊕
D

Mλ(D), (2)

where the direct sum is over all Dyck pathsD of size n. Equivalently, we have that the Frobenius character
of Parkn is given by Frob(Parkn) =

∑
D hλ(D). For example, the 5 Dyck paths of size 3 shown in

Figure 3 lead to the Frobenius character

Frob(Park3) = h(3) + 3h(2,1) + h(1,1,1). (3)

(i) Many authors instead define the area of a Dyck path D to be the number of complete lattice squares between D and the line
y = x, so that our statistic would be the ‘coarea’.
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Fig. 2: The four slim subgraphs of K3.

The vector space underlying the Sn+1-module which will extend Parkn is a subspace of the polynomial
ring C[x1, . . . , xn+1] in n + 1 variables and first studied in the work of Postnikov and Shapiro [PS04].
Let Kn+1 denote the complete graph on the vertex set [n + 1]. Given an edge e = (i < j) in Kn+1, we
associate the polynomial weight p(e) := xi − xj ∈ C[x1, . . . , xn+1]. A subgraph G ⊆ Kn+1 (identified
with its edge set) gives rise to the polynomial weight p(G) :=

∏
e∈G p(e). Following Postnikov and

Shapiro, we call a subgraph G ⊆ Kn+1 slim if the complement edge set Kn+1 −G is a connected graph
on the vertex set [n+ 1].

Definition 1 Denote by Vn the C-linear subspace of C[x1, . . . , xn+1] given by

Vn := span{p(G) : G is a slim subgraph of Kn+1}. (4)

Let Vn(k) denote the homogeneous piece of Vn of polynomial degree k; the space Vn(k) is spanned by
those polynomials p(G) corresponding to slim subgraphs G of Kn+1 with k edges.

In the case n = 2, Figure 2 shows that four slim subgraphs of the complete graph K3. From left to right,
the corresponding polynomials are 1, x1 − x2, x1 − x3, and x2 − x3. It follows that V2(0) = span{1}
and V2(1) = span{x1 − x2, x1 − x3, x2 − x3}. Observe that the graded Frobenius character of V2
is grFrob(V2; q) = s(3)q

0 + s(2,1)q
1. By the branching rule for symmetric groups (see [Sag01]), we

have that grFrob(ResS3

S2
(V2); q) = s(2)q

0 + (s(2) + s(1,1))q
1. Setting q = 1 yields Frob(ResS3

S2
(V2)) =

2s(2) + s(1,1), which agrees with the Frobenius character of Park2.
While the set of polynomials {p(G) : G is a slim subgraph of Kn+1} is linearly dependent in general,

a basis for Vn can be constructed using standard matroid theoretic results. Fix a total order on the edge
set of Kn+1. Given a spanning tree T of Kn+1, the external activity ex(T ) of T is the set of edges
e ∈ Kn+1 such that e is the minimal edge of the unique cycle in T ∪ {e}. A basis of Vn is given
by {p(Kn+1 − (T ∪ ex(T ))) : T is a spanning tree of Kn+1}. It follows immediately from Cayley’s
theorem that dimVn = (n+ 1)n−1.

Since the slimness of a subgraph is preserved under the action of Sn+1 on the vertex set [n + 1] and
p(G) is homogeneous of degree equal to the number of edges in G, it follows that Vn =

⊕
k≥0 Vn(k)

is a graded Sn+1-submodule of the polynomial ring C[x1, . . . , xn+1]. In fact, the space Vn sits inside
the copy of the coordinate ring of the reflection representation of type An sitting inside C[x1, . . . , xn+1]
generated by xi − xi+1 for 1 ≤ i ≤ n.

The following result was conjectured by the first author. We postpone its proof, along with the proofs
of the other results in this section, to Section 3.

Theorem 2 Embed Sn into Sn+1 by letting Sn act on the first n letters. We have that

Res
Sn+1

Sn
(Vn(k)) ∼=Sn

⊕
D

Mλ(D), (5)
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Fig. 3: The 5 Dyck paths of size 3. From left to right, their contributions to the graded Frobenius character
grFrob(ResS4

S3
(V3); q) are h(3)q

0, h(2,1)q
1, h(2,1)q

2, h(2,1)q
2, and h(1,1,1)q

3.

where the direct sum is over all Dyck paths of size n and area k. In particular, by Equation 2 we have that

Res
Sn+1

Sn
(Vn) ∼=Sn Parkn. (6)

Equivalently, we have that grFrob(Res
Sn+1

Sn
(Vn); q) =

∑
D q

area(D)hλ(D), where the sum is over all
Dyck paths D of size n. For example, computing the area and run partitions of the 5 Dyck paths of size 3
shown in Figure 3 shows that

grFrob(ResS4

S3
(V3); q) = h(3)q

0 + h(2,1)q
1 + 2h(2,1)q

2 + h(1,1,1)q
3. (7)

Postnikov and Shapiro showed that the dimension of the vector space Vn is equal to (n+1)n−1, however
the Sn-module structure of Vn has remained unstudied. Indeed, Theorem 2 is the first description of the
Sn-module structure of Vn.

It is natural to ask for an explicit description of the Sn+1-structure of Vn or of its graded pieces Vn(k).
This problem is open in general, but we can describe the extended structure of Vn(k) in the extreme
degrees k = 0, 1, . . . , n as well as k =

(
n
2

)
. Let Cn+1 be the cyclic subgroup of Sn+1 generated by the

long cycle c := (1, 2, . . . , n + 1) and let ζ be the linear representation of Cn+1 which sends c to e
2πi
n+1 .

Mackey’s Theorem can be used to prove that the Lie representation Lien := Ind
Sn+1

Cn+1
(ζ) of Sn+1 satisfies

Res
Sn+1

Sn
(Lien) ∼=Sn C[Sn]. Stanley proved that the Lie representation arises as the action of Sn+1 on

the top poset cohomology of the lattice of set partitions of [n + 1], tensored with the sign representation
[Sta82].

Proposition 3 The module Vn(0) carries the trivial representation of Sn+1, the module Vn(1) carries
the reflection representation of Sn+1, and in general Vn(k) = Symk(Vn(1)) for k < n. The module
Vn(
(
n
2

)
) = Vn(top) carries the Lie representation of Sn+1 tensor the sign representation.

The first part of this result is optimal in the sense that if k ≥ n then Vn(k) is a proper subspace of
Symk(Vn(1)).

We will prove a bivariate generalization of Theorem 2 which includes a ‘Fuss generalization’ as a
special case. Given `,m, n > 0, define a (`,m)-Dyck path of size n to be a lattice path D in Z2 consisting
of vertical steps (0, 1) and horizontal steps (1, 0) which starts at (−` + 1, 0), ends at (mn, n), and stays
weakly above the line y = x

m . Taking ` = m = 1, we recover the classical notion of a Dyck path of
size n. Taking ` = 1 and m general, the (1,m)-Dyck paths are the natural Fuss extension of Dyck paths.
As before, we define the vertical run partition λ(D) ` n of an (`,m)-Dyck path D of size n to be the
partition obtained by listing the lengths of the vertical runs of D in weakly decreasing order. We also
define the area partition µ(D) to be the length n partition whose Ferrers diagram fits between D and a
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Fig. 4: A (2, 2)-Dyck path of size 3.

(` − 1 + mn) × n) rectangle with lower left hand coordinate (−` + 1, 0). The area of D is defined by
area(D) := |µ(D)|. We have that mult(µ(D)) = λ(D).

Figure 4 shows an example of a (2, 2)-Dyck path of size 3. The path D starts at (−1, 0), ends at (6, 3),
and stays above the line y = x

2 . We have that λ(D) = (2, 1) ` 3, µ(D) = (5, 1, 1), and area(D) = 7.

Let K(`,m)
n+1 be the multigraph on the vertex set [n + 1] with m edges between i and j for all 1 ≤ i <

j ≤ n and ` edges between i and n + 1 for all 1 ≤ i ≤ n. We call a sub-multigraph G of K(`,m)
n+1 slim if

the multi-edge set difference K(`,m)
n+1 −G is a connected multigraph on [n+ 1]. We extend the polynomial

weight p(G) ∈ C[x1, . . . , xn+1] to multigraphs G in the obvious way.

Definition 4 Let V (`,m)
n be the C-linear subspace of C[x1, . . . , xn+1] given by the span

V (`,m)
n := span{p(G) : G is a slim sub-multigraph of K(`,m)

n+1 }. (8)

As in the case m = ` = 1, the space V (`,m)
n is stable under the action of Sn and is a graded Sn-

representation with respect to the standard polynomial degree. When ` = m, V (`,m)
n also caries an action

of Sn+1. Postnikov and Shapiro showed that the dimension of V (`,m)
n is (mn + `)n−1 [PS04]. Let

V
(`,m)
n (k) be the degree k piece of V (`,m)

n .

Theorem 5 We have that
(V (`,m)
n (k)) ∼=Sn

⊕
D

Mλ(D), (9)

where the direct sum is over all (`,m)-Dyck paths of size n and area k. For k < n, V (`,m)
n (k) =

Symk(V
(`,m)
n (1)).

When ` = m, the top degree piece of V (`,m)
n is isomorphic, as an Sn+1-module, to Lien ⊗ sign⊗`.

While the degree 0 and 1 pieces of V (`,m)
n have Sn+1-structure given by the trivial representation and

the reflection representation, respectively, the authors do not know of a nice expression for the extended
Frobenius character in other degrees.

3 Proofs
While Theorem 5 implies Theorem 2, the proof of Theorem 5 is a straightforward extension of the proof
of Theorem 2 and it will be instructive to prove Theorem 2 first.
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Fig. 5: A Dyck path D of size 5 and the associated subgraph G(D) of K6.

The first step in the proof of Theorem 2 is to relate the modules on both sides of the claimed iso-
morphism by associating a subgraph G(D) of Kn+1 and a polynomial p(D) ∈ C[x1, . . . , xn+1] to
any Dyck path D of size n. We start by labeling the 1 × 1 box b which is completely above the line
y = x with the edge e(b) = (n − j, n − i) in Kn+1, where (i, j) is the upper left coordinate of b. See
Figure 5 for an example of this labeling in the case n = 5. We let G(D) be the subgraph of Kn+1

consisting of those edges e(b) for which the box b is to the upper left of the path D. In Figure 5,
the shaded boxes above the path D each contribute an edge to the subgraph G(D) and we have that
G(D) = {1− 6, 1− 5, 1− 4, 1− 3, 2− 6, 2− 5, 3− 6}.

Lemma 6 The subgraph G(D) is slim for any Dyck path D.

Proof: The subgraph G(D) contains none of the edges in the path 1− 2− · · · − (n+ 1). 2

By Lemma 6, the polynomial p(D) := p(G(D)) is contained in Vn. For example, if n = 5 and D is
the Dyck path shown in Figure 5, we have that

p(D) = (x1 − x6)(x1 − x5)(x1 − x4)(x1 − x3)(x2 − x6)(x2 − x5)(x3 − x6) ∈ V5. (10)

By construction, for any Dyck pathD the polynomial p(D) is homogeneous with degree equal to area(D).
In order to prove the direct sum decomposition in Theorem 2, we will show that the polynomials p(D)

project nicely onto a certain subspace of C[x1, . . . , xn+1]. Since Theorem 2 only concerns the restriction
of Vn to Sn, it is natural to consider a subspace of C[x1, . . . , xn+1] which is closed under the action of
Sn but not of Sn+1.

Let stn := (n − 1, n − 2, . . . , 1) be the staircase partition of length n − 1. We call a partition
λ = (λ1, . . . , λn) sub-staircase if λ ⊆ stn (observe that this definition has tacit dependence on n). For
any Dyck path D of size n, the partition µ(D) is sub-staircase.

For a partition λ = (λ1, . . . , λn), we use the shorthand xλ := xλ1
1 · · ·xλnn ∈ C[x1, . . . , xn]. We call a

monomial xd11 · · ·x
dn+1

n+1 in the variables x1, . . . , xn+1 sub-staircase if there exists a permutation w ∈ Sn
and a sub-staircase partition λ = (λ1 ≥ · · · ≥ λn) ` n

xd11 · · ·x
dn+1

n+1 = w.xλ. (11)
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In particular, the variable xn+1 does not appear in any sub-staircase monomial. If the monomial xd11 · · ·x
dn+1

n+1

is sub-staircase, the partition λ is uniquely determined from the monomial; call this the exponent partition
of the monomial. Let Wn ⊂ C[x1, . . . , xn+1] be the C-linear span of all sub-staircase monomials. The
subspace Wn is closed under the action of Sn, but not under the action of Sn+1.

In the case n = 3, the S3-orbits of the 16 staircase monomials in C[x1, . . . , x4] are shown in the
following table, where the left column shows a representative from each orbit.

1
x1 x2, x3
x21 x22, x

2
3

x1x2 x1x3, x2x3
x21x2 x21x3, x

2
2x1, x

2
2x3, x

2
3x1, x

2
3x2

The S3-orbits are parametrized by sub-staircase partitions λ = (λ1, λ2, λ3) and each orbit contains a
unique representative of the form xλ. The staircase monomials form a linear basis of W3 and the cyclic
S3-submodule ofW3 generated by xλ is isomorphic toMmult(λ). The natural bijection between exponent
vectors and parking functions affords an isomorphism W3

∼=S3
Park3. These observations generalize in

a straightforward way to the following lemma, whose proof is left to the reader.

Lemma 7 The set of sub-staircase monomials forms a linear basis for Wn and is closed under the action
of Sn. The Sn-orbits are parametrized by sub-staircase partitions λ, and the orbit labeled by λ has a
unique monomial of the form xλ. The cyclic Sn-submodule of Wn generated by xλ is isomorphic to
Mmult(λ) and we have that Wn

∼=Sn Parkn.

With Lemma 7 in mind, we will construct a graded Sn-module isomorphism Vn
∼−→ Wn. We define a

graded Sn-module homomorphism φ : Vn →Wn by the following composition:

φ : Vn ↪→ C[x1, . . . , xn+1] � C[x1, . . . , xn] �Wn, (12)

where the first map is inclusion, the second is the specialization xn+1 = 0, and the third linear map fixes
the space Wn pointwise and sends monomials which are not sub-staircase to zero.

We want to show that φ is an isomorphism. Postnikov and Shapiro showed that dim(Wn) = dim(Vn) =
(n+ 1)n−1 [PS04], so it is enough to show that φ is surjective. We will do this by analyzing the polyno-
mials φ(p(D)), where D is a Dyck path of size n.

The set of sub-staircase partitions forms an order ideal in dominance order. The next lemma states
that the transition matrix between the set {φ(p(D)) : D a Dyck path of size n} expands in the monomial
basis of Wn given by {xλ : λ sub-staircase} in a unitriangular way with respect to any linear extension
of dominance order (where we associate φ(p(D)) with the partition µ(D)).

Lemma 8 Let D be a Dyck path of size n. There exist integers cλ,w ∈ Z such that

φ(p(D)) = xµ(D) +
∑

λ≺µ(D)
|λ|=|µ(D)|
w∈Sn

cλ,ww.x
λ. (13)
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Proof: By definition, we have that

p(D) =
∏

e=(i<j)∈G(D)

(xi − xj), (14)

so (up to sign) a typical monomial in the expansion of p(D) is obtained by choosing an endpoint of every
edge inG(D) and multiplying the corresponding variables. The map φ kills any monomial which contains
the variable xn+1, so up to sign a typical monomial in φ(p(D)) is obtained by choosing an endpoint of
each edge in G(D) and multiplying the corresponding variables such that whenever G(D) has an edge of
the form (i < n+1), we choose the smaller endpoint i. The result follows from the construction ofG(D)
and the definition of dominance order. 2

As an example of Lemma 8, consider the case n = 5 and let the Dyck path D be shown in Figure 5
with µ(D) = (4, 2, 1). To calculate φ(p(D)), we set x6 = 0 in the product formula for p(D) given in
Equation 10 and expand. The resulting polynomial is

φ(p(D)) = x1(x1 − x5)(x1 − x4)(x1 − x3)x2(x2 − x5)x3 (15)

= x41x
2
2x3 + terms involving sub-staircase monomials with exponent partition ≺ (4, 2, 1).

(16)

We are ready to complete the proof of Theorem 2.

Proof of Theorem 2: By Lemma 7, the set of sub-staircase monomials forms a linear basis of Wn, so
Lemma 8 implies that the Sn-module homomorphism φ : Vn → Wn is surjective. Since dim(Vn) =

dim(Wn), this implies that φ is also injective and gives an isomorphism Res
Sn+1

Sn
(Vn) ∼=Sn Parkn. To

prove the graded isomorphism in Theorem 2, it is enough to observe that mult(µ(D)) = λ(D) for any
Dyck path D and apply Lemmas 7 and 8 together with the fact that φ is graded. 2

It may be tempting to guess that p(D) generates a cyclic Sn-submodule of Vn isomorphic to Mλ(D),
but this is false in general. The reason for this is that while the ‘leading term’ in the expansion of φ(p(D))
in Lemma 8 generates the submoduleMλ(D) under the action of Sn, the other terms in this expansion can
cause φ(p(D)) to generate a different cyclic submodule.

We are ready to prove the claimed Sn+1-structure of the extreme degrees of the graded module Vn(k).

Proof of Proposition 3: It is clear from the definitions that Vn(0) carries the trivial representation of Sn+1.
The space Vn(1) has basis given by the polynomials x1−x2, x2−x3, . . . , xn−xn+1 and hence carries the
reflection representation of Sn+1 (i.e., the irreducible Sn+1-module corresponding to the partition (n, 1)).
Since Vn ⊆ Sym(Vn(1)) we are claiming that in degree k < n this is an equality. The Hilbert series of
Vn is the Tutte polynomial evaluation q(

n+1
2 )−nTKn+1

(1, 1/q) and so we must prove that the first n − 1

terms of this sum are the binomial coefficents
(
n+k−1

k

)
. There is nothing special aboutKn+1 in this claim

and we will prove a more general statement in Lemma 9.
To prove that Vn(top) is isomorphic to Lien+1 ⊗ sign we reason as follows. The space Vn(top) is

spanned by those p(G) where the complementary subgraph Kn+1 \G is connected and has n edges.
LetAn denote the braid arrangementin Cn+1, which is the union of those hyperplanes with at least two

coordinates equal. Let H∗(Cn+1 \ An;C) denote the (complexified) de Rham cohomology ring of its
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complement. Consider, now, the linear map c : Vn(top)→ Hn(Cn+1 \ An) that sends

p(G) 7→ p(G) · d(x1 − x2) ∧ d(x2 − x3) ∧ · · · ∧ d(xn − xn+1)/
∏

1≤i<j≤n

(xi − xj).

This is an isomorphism of vector spaces, since it is division by the Vandermond product, followed by mul-
tiplication by the n-form. To see that c is equivariant notice that

∧n
Vn(1) carries the sign representation

of Sn+1, because it is 1 dimensional and non-trivial. Likewise does the one dimensional representation
spanned by the Vadnermond product. It follows that the signs introduced by multiplication by the n-form
and division by the Vandermond cancel, and c is equivariant.

Finally, the top degree cohomology of the complement Cn+1 \ An is known to be Sn+1-isomorphic to
the top degreee Whitney homology of its lattice of flats. The lattice of flats of An is the partition lattice
Πn+1 and by a result of Stanley [Sta82] (beautifuly recounted by Wachs in [Wac07]), the top degree
Whitney homology of the partition lattice Πn+1 is Lien+1 ⊗ sign. 2

Lemma 9 Let G be a connected graph on v vertices with e edges. Denote the Tutte polynomial of G by
TG(x, y). Then, the polynomial qe−v+1TG(1, 1/q) takes the form,

1 + (v − 1)q +

(
v

2

)
q2 +

(
v + 1

3

)
q3 + · · ·+

(
(v − 1) + (v − 2)− 1

v − 2

)
qv−2 +O(qv−1).

Proof: We write TG(x, y) in terms of the two variable coboundary polynomial, χG(λ, ν). This is the sum

χG(λ, ν) =
1

λ

e∑
i=0

ci(G;λ)νi

where ci(G;λ) is the number of ways to color the vertices ofGwith λ colors and exactly imonochromatic
edges. It is a fact that this is a polynomial in λ and ν. Now by [Whi92, Theorem 6.3.26],

qe−v+1TG(1, 1/q) =
qe

(1− q)v−1
χG(0, 1/q).

Thus, to prove the first part of the lemma we will show that ci(G;λ) = 0 for e − v + 1 < i < e, and
that ce(G;λ) = λ. Suppose that we have colored the vertices of G and we have more than e − v + 1
monochromatic edges. Then the collection of monochromatic edges forms a connected subgraph of G.
It follows that all vertices of G are colored the same and hence all edges of G are monochromatic. This
means that ci(G;λ) = 0 unless i = e. That ce(G;λ) = λ is clear. 2

The proof of Theorem 5 is a straight-forward extension of the proof of Theorem 2 and is only sketched.

Proof of Theorem 5, sketch: Given any (`,m)-Dyck path D of size n we associate a sub-multigraph
G(D) of K(`,m)

n+1 by letting every box which contributes to area(D) correspond to a single edge in the
multigraph G(D); the labeling which accomplishes this is shown in Figure 6 in the case (`,m) = (3, 2)
and n = 4. For general `,m, and n, we label the boxes in the ith row from the top from left to right with
(`+m−2) copies of the edge i−(n+1),m copies of the edge i−n,m copies of the edge i−(n−1), . . . ,
m copies of the edge i− (i+ 2), and (m− 1) copies of the edge i− (i+ 1).
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Fig. 6: A (3, 2)-Dyck path D of size 4 and the associated sub-multigraph G(D) of K(3,2)
4 .

For any (`,m)-Dyck path D of size n, the multigraph complement of G(D) within K(`,m)
n contains

each of the edges in the path 1 − 2 − · · · − n − (n + 1) with multiplicity at least one. Therefore, the
sub-multigraph G(D) is slim and the polynomial p(D) := p(G(D)) is contained in V (`,m)

n .
We say that a partition λ with n parts is sub-(`,m)-staircase if in Young’s lattice we have the relation

λ ⊆ (`− 1 +m(n− 1), `− 1 +m(n− 2), . . . , `− 1). A monomial xd11 · · ·x
dn+1

n+1 is sub-(`,m)-staircase
if there exists w ∈ Sn and a sub-(`,m)-staircase partition λ such that

xd11 · · ·x
dn+1

n+1 = xλ1

w(1) · · ·x
λn
w(n). (17)

Let W (`,m)
n be the subspace of C[x1, . . . , xn+1] spanned by the set of all sub-(`,m)-staircase monomi-

als. We have that W (`,m)
n is closed under the action of Sn and the degree k homogeneous piece of W (`,m)

n

is isomorphic as an Sn-module to the direct sum on the right hand side of the isomorphism asserted in
Theorem 5.

The isomorphism in Theorem 5 is proven by showing that the graded Sn-module homomorphism
φ(`,m) : V

(`,m)
n →W

(`,m)
n given by the composite

φ(`,m) : V (`,m)
n ↪→ C[x1, . . . , xn+1] � C[x1, . . . , xn] �W (`,m)

n (18)

is an isomorphism, where the first map is inclusion, the second is the evaluation xn+1 = 0, and the third
fixes W (`,m)

n pointwise and sends every monomial which is not sub-(`,m)-staircase to zero.
Postnikov and Shapiro proved that the vector space V (`,m)

n has dimension (` + mn)n−1 [PS04]. A
standard counting argument shows that there are (` + mn)n−1 sub-(`,m)-staircase monomials, so we
have that dim(V

(`,m)
n ) = dim(W

(`,m)
n ). Therefore, to show that φ(`,m) is a graded isomorphism of

Sn-modules, it is enough to show that φ(`,m) is surjective.
To show that φ(`,m) is surjective, we prove a generalization of Lemma 8 which states that for any

(`,m)-Dyck path D of size n, the monomial expansion of φ(`,m)(p(D)) has the form

φ(`,m)(p(D)) = xµ(D) + terms involving monomials whose exponent partitions are ≺ µ(D), (19)

where we extend the definition of µ(D) to (`,m)-Dyck paths of size n in the obvious way. This trian-
gularity result implies that φ(`,m) is surjective, and dimension counting implies that φ(`,m) is a graded
Sn-module isomorphism. Theorem 5 follows.
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The claim about V (`,m)
n in low degree follows since Vn ⊂ V (`,m)

n . The claim about V (`,`)
n (top) follows

since this space is isomorphic to Vn(top), the isomorphism being division by
∏
i<j(xi − xj)`−1. 2

4 Concluding Remarks
In this paper we constructed a graded Sn+1-module Vn which satisfies Res

Sn+1

Sn
(Vn) ∼=Sn Parkn. As we

mentioned in Section 1, there does not exist an S6-module M such that ResS6

S4
(M) ∼=S4 Park4, so we

cannot hope for an extension of Parkn to a symmetric group of higher rank than n+ 1 in general.
On the other hand, we identified the top degree Vn(top) of Vn with the Lie representation Lien of Sn+1

tensor the sign representation. Whitehouse [Whi97] proved that the representation Lien extends to Sn+2.
This suggests the following problem.

Problem 10 For which values of n and k does Vn(k) extend to a representation of Sn+2?

By Whitehouse’s result, for any n > 0, the k-value k =
(
n−1
2

)
leads to an extension as in Problem 10.

Also, since Vn(0) is the trivial representation of Sn+1, one can take k = 0 and n arbitrary. On the other
hand, if k = 1 we have that Vn(1) is the reflection representation of Sn+1. For n > 3, this representation
is not the restriction of any Sn+2-module.
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