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The critical surface fugacity for self-avoiding
walks on a rotated honeycomb lattice

Nicholas R. Beaton
LIPN (UMR 7030), Université Paris 13, 93430 Villetaneuse, France

Abstract. In a recent paper with Bousquet-Mélou, de Gier, Duminil-Copin and Guttmann (2012), we proved that
a model of self-avoiding walks on the honeycomb lattice, interacting with an impenetrable surface, undergoes an
adsorption phase transition when the surface fugacity is 1 +

√
2. Our proof used a generalisation of an identity

obtained by Duminil-Copin and Smirnov (2012), and confirmed a conjecture of Batchelor and Yung (1995). Here
we consider a similar model of self-avoiding walk adsorption on the honeycomb lattice, but with the impenetrable
surface placed at a right angle to the previous orientation. For this model there also exists a conjecture for the critical
surface fugacity, made by Batchelor, Bennett-Wood and Owczarek (1998). We adapt the methods of the earlier paper
to this setting in order to prove the critical surface fugacity, but have to deal with several subtle complications which
arise.

This article is an abbreviated version of a paper of the same title, currently being prepared for submission.

Résumé. Dans un article récent avec Bousquet-Mélou, de Gier, Duminil-Copin et Guttmann (2012), nous avons
prouvé qu’un modèle de marches auto-évitantes sur le réseau hexagonal, interagissant avec une surface impénétrable,
subit une transition de phase absorbante quand la fugacité de la surface est 1 +

√
2. Notre preuve utilisait une

généralisation d’une identité obtenue par Duminil-Copin et Smirnov (2012), et permettait d’établir une conjecture de
Batchelor et Yung (1995). Ici nous considérons un modèle similaire d’absorption de marches aléatoires auto-évitantes
sur le réseau hexagonal, mais avec une surface impénétrable placée à angle droit par rapport à l’orientation précédente.
Pour ce modèle il existe aussi une conjecture concernant la fugacité critique de la surface, formulée par Batchelor,
Bennett-Wood et Owczarek (1998). Nous adaptons les méthodes de l’article précédent à ce cadre afin de prouver la
fugacité critique de la surface, mais devons faire face à plusieurs complications subtiles qui apparaissent.

Cet article est la version courte d’une article ayant le même titre et actuellement en préparation.

Keywords: self-avoiding walks, polymer adsorption, honeycomb lattice, discrete holomorphicity

1 Introduction
Self-avoiding walks (SAWs) have been considered a model of long-chain polymers in solution for a num-
ber of decades – see for example early works by Orr (1947) and Flory (1949). In the simplest model one
associates a weight (or fugacity) x with each step (or monomer, in the context of polymers) of a walk, and
then (for a given lattice) considers the generating function

C(x) =
∑
n≥0

cnx
n,
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where cn is the number of SAWs starting at a fixed origin and comprising n steps.
It is straightforward to show (see e.g. Madras and Slade (1993)) that the limit

µ := lim
n→∞

c1/nn

exists and is finite. The lattice-dependent value µ is known as the growth constant, and is the reciprocal
of the radius of convergence of the generating function C(x). The honeycomb lattice is the only reg-
ular lattice in two or more dimensions for which the value of the growth constant is known; its value
µ =

√
2 +
√

2 was conjectured in 1982 by Nienhuis (1982) and proved by Duminil-Copin and Smirnov
(2012).

The interaction of long-chain polymers with an impenetrable surface can be modelled by restricting
SAWs to a half-space, and associating another fugacity y with vertices (or edges) in the boundary of the
half-space which are visited by a walk. It is standard practice to place the origin on the boundary. This
naturally leads to the definition of a partition function

C+
n (y) =

∑
m≥0

c+n (m)ym,

where c+n (m) is the number of n-step SAWs starting on the boundary of the half-space and occupying m
vertices in the boundary.

The limit
µ(y) := lim

n→∞
C+
n (y)1/n

has been shown to exist for the d-dimensional hypercubic lattice for y > 0 (see e.g. Hammersley et al.
(1982)). It is a finite, log-convex and non-decreasing function of y, and is thus continuous and almost
everywhere differentiable. The adaptation of the proof to other regular lattices (in particular, to the hon-
eycomb lattice) is elementary – see Beaton (2012) for details.

It can also be shown that for 0 < y ≤ 1,

µ(y) = µ(1) = µ,

and that µ(y) ≥ max{µ,√y}. (The lower bound
√
y applies to the honeycomb lattice as discussed in this

paper, but this bound varies depending on the lattice and orientation of the surface.(i)) This implies the
existence of a critical fugacity yc ≥ 1 satisfying

µ(y)

{
= µ if y ≤ yc,
> µ if y > yc.

This critical fugacity signifies an adsorption phase transition, and demarcates the desorbed phase y < yc
and the adsorbed phase y > yc.

Just as the honeycomb lattice is the only regular lattice whose growth constant is known exactly, it is
also the only lattice for which an exact value for yc is known. In fact, because there are two different ways
to orient the surface (see Figure 1) for the honeycomb lattice, there are two different values of yc. When the

(i) In general, it is straightforward to show µ(y) ≥ y1/k , where k is the minimum number of steps required to walk from one
weighted vertex to another.
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(a) (b)

Fig. 1: The two orientations of an impenetrable surface on the honeycomb lattice, with the surface vertices
indicated.

surface is oriented so that there are lattice edges perpendicular to the surface (i.e. Figure 1(a)), the critical
fugacity is yc = 1+

√
2. This value was conjectured by Batchelor and Yung (1995), using the integrability

of the model and comparison with a more general solvable loop model on the square lattice. The critical
boundary weight was obtained by finding reflection matrices which satisfy the boundary Yang-Baxter
equation. A proof was discovered by Beaton et al. (2012); it used a generalisation of an identity obtained
by Duminil-Copin and Smirnov (2012), as well as an adaptation of some results of Duminil-Copin and
Hammond (2012).

It is the other orientation of an impenetrable surface on the honeycomb lattice (i.e. Figure 1(b)) that
is the focus of this article. For this model of polymer adsorption there is also a conjecture regarding the
critical surface fugacity, due to Batchelor et al. (1998) and obtained using the same methods as for the
first orientation. In this extended abstract we sketch the proof of that result:

Theorem 1 For the self-avoiding walk model on the semi-infinite honeycomb lattice with the boundary
oriented as per Figure 1(b), the critical surface fugacity is

y = yc =

√
2 +
√

2

1 +
√

2−
√

2 +
√

2
= 2.455 . . .

This paper is an overview of Beaton (2012), which in turn largely follows the same structure as Beaton
et al. (2012). In the interest of brevity we omit most proofs. We first present an identity relating several
different generating functions of SAWs in a finite domain, evaluated at the critical step fugacity x = xc =
µ−1. We then give adaptations of some existing results for the hypercubic lattice to the honeycomb lattice,
and show how the critical fugacity relates to an appropriate limiting case of our identity. This relationship
enables us to derive a proof of Theorem 1, subject to a certain generating function in a restricted geometry
(specifically, the generating function of self-avoiding bridges which span a strip of height T ) disappearing
in a limit. We omit the proof of that result here; it is given in the appendix of Beaton (2012). The proof
there is very similar to that of the appendix in Beaton et al. (2012), which was in turn based on arguments
featured in Duminil-Copin and Hammond (2012).

In Beaton et al. (2012), we also established identities for a generalisation of the self-avoiding walk
model, namely the O(n) loop model. The equivalent generalisation for the rotated lattice is discussed in
Beaton (2012), and we refer the reader to that article for further details.
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a

z

Fig. 2: A SAW on the honeycomb lattice. The contribution of this SAW to F (z) is e−iσπx33y4.

2 The identities
2.1 The local identity for bulk vertices
We consider the semi-infinite honeycomb lattice, oriented as in Figure 1(b), embedded in the complex
plane in such a way that the edges have unit length. We follow the examples of Duminil-Copin and
Smirnov (2012) and Beaton et al. (2012) and consider self-avoiding walks which start and end at the
mid-points of edges on the lattice. Note that this means the length of a walk is the same as the number
of vertices it occupies. We define a domain Ω to be a finite connected collection of mid-edges with the
property that for every vertex v adjacent to a mid-edge of Ω, all three mid-edges adjacent to v must be in
Ω. We denote by V (Ω) the set of vertices adjacent to mid-edges of Ω, and by ∂Ω the set of mid-edges of
Ω adjacent to only one vertex of V (Ω). Let γ be a self-avoiding walk. We denote by |γ| the number of
vertices occupied by γ and by c(γ) the number of contacts with the surface (i.e. vertices on the surface
occupied by γ).

Now define the following so-called parafermionic observable: for a ∈ ∂Ω and z ∈ Ω, set

F (Ω, a, p;x, y, σ) ≡ F (p) :=
∑
γ:a→p

x|γ|yc(γ)e−iσW (γ),

where the sum is over all SAWs γ ⊂ Ω which run from a to p, and W (γ) is the winding angle of γ, that
is, π/3 times the difference between the number of left turns and right turns. See Figure 2 for an example.

The following lemma appears as part of Lemma 3 in Beaton et al. (2012); the case y = 1 is due to
Smirnov (2010).

Lemma 2 Let

σ = −1

8
, x−1c = 2 cos

(
3π

8

)
=

√
2−
√

2, or (1)

σ =
5

8
, x−1c = 2 cos

(π
8

)
=

√
2 +
√

2. (2)
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Then for a vertex v ∈ V (Ω) not belonging to the weighted surface, the observable F satisfies

(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0, (3)

where p, q, r are the three mid-edges adjacent to v, and the variable x is set to xc.

Equation (1) corresponds to the larger of the two critical values of the step weight x and hence to the
dense regime critical point, while (2) corresponds to the line of critical points separating the dense and
dilute phases. In what follows we refer to (1) and (2) as the dense and dilute regimes respectively.

2.2 The local identity for surface vertices
We now wish to generalise Lemma 2 to include vertices lying on the weighted boundary. To do this,
we have to be more particular about the domain being used. We work in the special domain DT,L, as
illustrated in Figure 3. The height T of the domain is the length of the shortest walk starting at a and
ending at the top boundary; the width 2L + 1 is the number of columns of cells. Walks start at the mid-
edge a. We choose this mid-edge in order to preserve the reflective symmetry of the domain, which greatly
simplifies an important identity. However, the fact that a is not an external mid-edge does introduce some
complications:

• A walk which ends at a particular external mid-edge could have two different winding angles,
depending on whether it started from a in the left or right direction. This is undesirable, but easily
corrected. Define

W ∗(γ) :=


W (γ) + π/2 if γ starts in the left direction,
W (γ)− π/2 if γ starts in the right direction,
0 if γ is the empty walk.

Then, define F ∗(p) in the same way as F (p), but now using W ∗ instead of W .

• This new observable F ∗ will satisfy the same identity (3) as F on all non-boundary vertices of
DT,L, except for the vertices a− and a+ adjacent to a. To deal with this, we define V ′(DT,L) :=
DT,L\{a−, a+}, and will end up evaluating (3) only on the vertices of V ′(DT,L).

Proposition 3 Let σ and xc be as defined in (2). Define 1β+(v) to be 1 if the vertex v is adjacent to a
mid-edge in β+ and 0 otherwise, and similarly define 1β−(v). Then for every vertex v in V ′(DT,L) with
adjacent mid-edges p, q, r,

(p− v)F ∗(p) + (q − v)F ∗(q) + (r − v)F ∗(r)

= 1β+(v)(1− y)e−iσ(−π/6)(xcy)−1

(
(r − v)λ̄

∑
γ:a→r→p

x|γ|c yc(γ) + (q − v)λ
∑

γ:a→q→p
x|γ|c yc(γ)

)

+ 1β−(v)(1− y)e−iσ(π/6)(xcy)−1

(
(r − v)λ̄

∑
γ:a→r→p

x|γ|c yc(γ) + (q − v)λ
∑

γ:a→q→p
x|γ|c yc(γ)

)
, (4)

where for vertices adjacent to mid-edges in β+ or β−, the surrounding mid-edges p, q, r are in clockwise
order from the external mid-edge, and the sums are over walks which visit the indicated mid-edges in the
prescribed order.
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ε+

ε+

ε+

ε−

ε−

ε−

αO+ αO+αI+αO− αI+αI−αI−αO−

β− β+β+β−β+β−β+β−β+β−

aa− a+

Fig. 3: The domain DT,L of height T = 7 and width 2L + 1 = 9, with the weighted vertices on the β
boundary indicated. The external mid-edges attached to a− and a+ are present in the domain but will not
play a part in the identity, and are thus not illustrated.

It is clear that if y = 1 or if v is not a weighted vertex, then the RHS of (4) disappears and thus (4)
reduces to something very similar to (3) – the differences being that here a is not an external mid-edge,
and V ′(DT,L) does not quite include all vertices in the domain. The factors e−iσ(−π/6) and e−iσ(π/6) are
the contributions of the modified winding angles of walks to β+ and β− mid-edges respectively.

2.3 The domain identity

In Duminil-Copin and Smirnov (2012), the authors use Lemma 2 to prove that the growth constant of self-
avoiding walks (the dilute regime) is x−1c =

√
2 +
√

2. They do so by considering a special trapezoidal
domain, and using the local identity (3) to derive a domain identity satisfied by generating functions of
SAWs which end on different sides of the domain. In Beaton et al. (2012), that identity is generalised to
one which relates generating functions of theO(n) loop model and takes into account the surface fugacity
y.

Here, we construct a similar identity to the one used in Beaton et al. (2012). We take σ and xc to be the
values given in (2).

Define

AOT,L(x, y) =
∑

γ:a→αO+
⋃
αO−

x|γ|yc(γ) AIT,L(x, y) =
∑

γ:a→αI+
⋃
αI−

x|γ|yc(γ)

ET,L(x, y) =
∑

γ:a→ε+
⋃
ε−

x|γ|yc(γ) BT,L(x, y) =
∑

γ:a→β+
⋃
β−

x|γ|yc(γ),

where each sum runs over SAWs which start at a and end in the indicated set of external mid-edges of
DT,L. Also, define

PT,L(x, y) =
∑
ρ3a

x|ρ|yc(ρ),
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which sums over all undirected (non-empty) self-avoiding polygons in DT,L which contain a. That is,
ρ is a simple closed loop on the edges of DT,L which passes through a, |ρ| is the number of edges (or,
equivalently, vertices) occupied by ρ and c(ρ) is the number of boundary vertices occupied by ρ.

Proposition 4 Let T +L ≡ 1(mod 2). Then the generating functions AOT,L, A
I
T,L, ET,L, BT,L and PT,L,

evaluated at x = xc, satisfy the identity

cOAA
O
T,L(xc, y) + cIAA

I
T,L(xc, y) + cEET,L(xc, y) + cPPT,L(xc, y) + cB(y)BT,L(xc, y) = cG, (5)

where

cOA := 2 cos

(
5π

16

)
=

√
2−

√
2−
√

2, cIA := 2 cos

(
7π

16

)
=

√
2−

√
2 +
√

2,

cE := 2 cos

(
3π

16

)
=

√
2 +

√
2−
√

2,

cP :=
4

xc
cos

(
7π

16

)
= 2

√
4 + 2

√
2−

√
2
(

10 + 7
√

2
)
,

cG := 4xc cos
( π

16

)
=

√√√√2

(
4− 2

√
2 +

√
2
(

2−
√

2
))

, and

cB(y) := 2 cos
( π

16

)
−

2(1− xcy − x2cy2) cos
(
15π
16

)
+ 2x2cy

2 cos
(
5π
16

)
xcy(1 + xcy)

=
cB

xcy(1 + xcy)
− xcyc

O
A

1 + xcy
, and cB := cB(1) = 2 cos

( π
16

)
=

√
2 +

√
2 +
√

2.

The proof follows by computing the sum

S =
∑

v∈V ′(DT,L)
p,q,r∼v

(p− v)F ∗(p) + (q − v)F ∗(q) + (r − v)F ∗(r), (6)

where p, q, r are the three mid-edges adjacent to vertex v, in two ways. One one hand, the contribution to
S of any “internal” mid-edge (i.e. any mid-edge adjacent to two vertices in V ′(DT,L)) will be 0, and thus
we only need to consider the contributions of external mid-edges. On the other hand, (4) guarantees that
the contribution of any unweighted vertex is 0, and so we can compute S by calculating the contributions
of the vertices on the β boundary. We require T + L ≡ 1(mod 2) so that we can pair up vertices on the β
boundary.

3 The critical surface fugacity
In this extended abstract we omit most of the technical results which enable us to adapt known results for
the hypercubic lattice (see Hammersley et al. (1982) and van Rensburg et al. (2006)) to the honeycomb
lattice, and instead only present the main result that we need. In a strip of height T , we set the mid-edge a
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a

(a)

a

(b)

a

(c)

Fig. 4: Sections of the strip of height T , with (a) an arch, (b) a bridge and (c) a general walk. The dark
circles indicate the weighted vertices on the top of the strip.

to be a horizontal mid-edge on the bottom of the strip (similar to its placement in the finite domain DT,L).
We then define the following three types of SAWs (see Figure 4): bridges, which start at a and end at the
top of the strip; arches, which start at a and end on the bottom of the strip; and general walks, which start
at a and may end anywhere in the strip. We then define the generating function

BT (x, y) =
∑
n,m≥0

bT,n(m)xnym

where BT,n(m) is the number of length n bridges in the strip of width T which contain m vertices at the
top of the strip. We likewise define AT (x, y) and CT (x, y) for arches and general walks respectively.

The following proposition will allow us to relate the generating functions we considered in the previous
section with the critical surface fugacity yc. Recall from Section 1 the definition of µ(y).

Proposition 5 For y > 0, the generating functions AT (x, y), BT (x, y) and CT (x, y) all have the same
radius of convergence, ρT (y). The sequence ρT (y) decreases to ρ(y) := µ(y)−1 as T →∞. In particu-
lar, ρT (y) decreases to ρ := µ−1 for y ≤ yc.

There exists a unique yT > 0 such that ρT (yT ) = xc := µ−1. The series (in y) AT (xc, y), BT (xc, y)
and CT (xc, y) have radius of convergence yT , and yT decreases to the critical fugacity yc as T →∞.

We now return to the identity (5) relating the generating functions in the domainDT,L. Note that cB(y)
is a continuous and monotone decreasing function of y for y > 0, and that cB(y†) = 0 where

y† =

√
2 +
√

2

1 +
√

2−
√

2 +
√

2
.

For 0 < y < y†, every term in (5) is non-negative. Observe that AOT,L, AIT,L, BT,L and PT,L are
increasing with L. (As L increases these generating functions just count more and more objects.) We then
see that for those values of L satisfing T + L ≡ 1 (mod 2), ET,L must decrease as L increases. It is thus
valid to take the limit L→∞ of (5) over the values of L with T +L ≡ 1 (mod 2). But now AOT,L, AIT,L,
BT,L and PT,L actually increase with L regardless of whether T + L ≡ 1 (mod 2) or not, and so they
have the same limits as L → ∞ over any subsequence of L values. Hence, we can in fact take the limit
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L→∞ of (5) over all values of L. If we define

AOT (xc, y) := lim
L→∞

AOT,L(xc, y),

and similar limits for the other generating functions (we also have limL→∞BT,L(x, y) = BT (x, y) as
defined earlier), then we obtain

cOAA
O
T (xc, y) + cIAA

I
T (xc, y) + cEET (xc, y) + cPPT (xc, y) + cB(y)BT (xc, y) = cG. (7)

In this rest of this section, we will prove the following:

Proposition 6 If it can be shown that

B(xc, 1) := lim
T→∞

BT (xc, 1) = 0

then yc = y†.

The proof that B(xc, 1) = 0 is quite involved and will thus be omitted from this extended abstract; see
the appendix of Beaton (2012).

We begin by establishing a lower bound on yc with a straightforward corollary to Proposition 5.

Corollary 7 The critical surface fugacity yc satisfies

yc ≥ y†.

Proof: For y < y† the identity (7) establishes the finiteness of BT (xc, y), and thus we see yT ≥ y†. By
Proposition 5 it then follows that yc ≥ y†. 2

We now show that one of the generating functions in (7) has disappeared in the limit L→∞.

Corollary 8 For 0 ≤ y < y†,

ET (xc, y) := lim
L→∞

ET,L(xc, y) = 0,

and hence
cOAA

O
T (xc, y) + cIAA

I
T (xc, y) + cPPT (xc, y) + cB(y)BT (xc, y) = cG. (8)

Proof: By Proposition 5, yT is the radius of convergence of CT (xc, y). Since yT ≥ yc ≥ y†, it follows
that CT (xc, y) is convergent for 0 ≤ y < y†. Now∑

L

ET,L(xc, y) ≤ CT (xc, y) <∞,

as each walk counted by ET,L, for every value of L, will also be counted by CT . The corollary follows
immediately. 2

We note here that AOT (xc, y) ≤ CT (xc, y) (since any walk counted by AOT is also counted by CT ), and
likewise for AOT and PT . Hence all the generating functions featured in (8) have radius of convergence at
least yT .
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T + 1
T

Fig. 5: Factorisation of a walk counted by AOT+1 into two bridges.

Now consider the y = 1 case of (8):

cOAA
O
T (xc, 1) + cIAA

I
T (xc, 1) + cPPT (xc, 1) + cBBT (xc, 1) = cG.

Since AOT (xc, 1), AIT (xc, 1) and PT (xc, 1) all increase with T (as T increases these generating functions
count more and more objects), and since they are all bounded by this identity, it follows that they all have
limits as T → ∞. Then BT (xc, 1) must decrease as T increases, and it too has a limit as T → ∞. As
indicated in Proposition 6, we denote this limit

B(xc, 1) := lim
T→∞

BT (xc, 1).

Proof of Proposition 6: Assume now that B(xc, 1) = 0. Any walk counted by AOT+1(xc, y) which has
contacts with the top boundary can be factored into two pieces by cutting it at the mid-edge immediately
following its last surface contact. (See Figure 5.) The first piece, after reflecting the last step, is an
object counted by BT+1(xc, y), while the second piece (with its direction reversed) will be counted by
(1 + xc)BT (xc, 1)/2. Thus we obtain

AOT+1(xc, y)−AOT (xc, 1) ≤ 1 + xc
2
·BT+1(xc, y)BT (xc, 1)

≤ BT+1(xc, y)BT (xc, 1).

This inequality is valid in the domain of convergence of the series it involves, that is, for y < yT+1. Using
similar arguments we can obtain the equivalent inequality for AIT+1(xc, y) and PT+1(xc, y).

Combining this decomposition for AOT+1, A
I
T+1 and PT+1, we find for 0 ≤ y < yT+1,

cOA[AOT+1(xc, y)−AOT (xc, 1)] + cIA[AIT+1(xc, y)−AIT (xc, 1)] + cP [PT+1(xc, y)− PT (xc, 1)]

≤ (cOA + cIA + cP )BT+1(xc, y)BT (xc, 1). (9)

Using (8) to eliminate the AO, AI and P terms, we obtain

cBBT (xc, 1)− cB(y)BT+1(xc, y) ≤ (cOA + cIA + cP )BT+1(xc, y)BT (xc, 1),
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and hence

0 ≤ 1

BT+1(xc, y)
≤ (cOA + cIA + cP )

cB
+

cB(y)

cBBT (xc, 1)
. (10)

In particular, for 0 ≤ y < yc = limT→∞ yT and for any T ,

0 ≤ xc(c
O
A + cIA + cP )

cB
+

cB(y)

cBBT (xc, 1)
. (11)

Now consider what happens as T → ∞. By assumption, limT→∞BT (xc, 1) = 0. Suppose (for a
contradiction) that yc > y†. Then for any y† < y < yc and sufficiently large T , the RHS of (11) will be
negative, because cB(y) < 0 for y > y† and BT (xc, 1)−1 will become arbitrarily large. This contradicts
the inequality, and we are forced to conclude yc ≤ y†, and hence yc = y†. 2
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