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Periodic Patterns of Signed Shifts

Kassie Archer and Sergi Elizalde†

Department of Mathematics, Dartmouth College, Hanover, NH, USA

Abstract. The periodic patterns of a map are the permutations realized by the relative order of the points in its
periodic orbits. We give a combinatorial description of the periodic patterns of an arbitrary signed shift, in terms of
the structure of the descent set of a certain transformation of the pattern. Signed shifts are an important family of
one-dimensional dynamical systems. For particular types of signed shifts, namely shift maps, reverse shift maps, and
the tent map, we give exact enumeration formulas for their periodic patterns. As a byproduct of our work, we recover
some results of Gessel and Reutenauer and obtain new results on the enumeration of pattern-avoiding cycles.

Résumé. Les motifs périodiques d’une fonction sont les permutations réalisées par l’ordre relatif des points dans ses
orbites périodiques. Nous donnons une description combinatoire des motifs périodiques d’un shift signé arbitraire, en
termes de la structure de l’ensemble des descentes d’une certaine transformation du motif. Les shifts signés sont une
familie importante de systèmes dynamiques unidimensionnels. Pour des types particuliers de shifts signés, comme
les fonctions de shift, les fonctions de shift inversées, et la fonction de tente, nous donnons des formules exactes pour
l’énumération de leurs motifs périodiques. Comme sous-produit de notre travail, nous retrouvons des résultats de
Gessel et Reutenauer et obtenons de nouveaux résultats sur l’énumération de cycles qui évitent certain motifs.
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1 Introduction
1.1 Background and motivation
Permutations realized by the orbits of a map on a one-dimensional interval have received a significant
amount of attention in the last five years [2]. These are the permutations given by the relative order of the
elements of the sequence obtained by successively iterating the map, starting from any point in the inter-
val. One the one hand, understanding these permutations provides a powerful tool to distinguish random
from deterministic time series, based on the remarkable fact [6] that every piecewise monotone map has
forbidden patterns, i.e., permutations that are not realized by any orbit. Permutation-based tests for this
purpose have been developed in [4]. On the other hand, the set of permutations realized by a map (also
called allowed patterns) has a rich combinatorial structure. The answer to certain enumerative questions,
often involving pattern-avoiding permutations, provides information about the associated dynamical sys-
tems. For example, determining the asymptotic growth of the number of allowed patterns of a map reveals
its so-called topological entropy, an important measure of the complexity of the system.
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The dynamical systems most commonly studied from the perspective of forbidden patterns are shifts,
and more generally signed shifts [1], a large family of maps that includes the tent map (which is equivalent
to the logistic map). As we will see, signed shifts have a simple discrete structure which makes them
amenable to a combinatorial approach, yet they include many important chaotic dynamical systems.

Permutations realized by shifts were first considered in [3], and later characterized and enumerated
in [8]. More recently, permutations realized by the more general β-shifts have been studied in [9]. For the
logistic map, some properties of their set of forbidden patterns were given in [10].

If instead of considering an arbitrary initial point in the domain of the map we restrict our attention to
periodic points, the permutations realized by the relative order of the entries in the corresponding orbits
(up until the first repetition) are called periodic patterns. In the case of continuous maps, Sharkovskii’s
theorem [13] gives a beautiful characterization of the possible periods of these orbits. More refined
results that consider which periodic patterns are forced by others are known for continuous maps [7, 12].
However, little is known when the maps are not continuous, as is the case for shifts and, more generally,
signed shifts.

The subject of study of this paper are periodic patterns of signed shifts. Our main result is a charac-
terization of the periodic patterns of an (almost) arbitrary signed shift, given in Theorem 2.1. For some
particular cases of signed shifts we obtain exact enumeration formulas: the number of periodic patterns
of the tent map is given in Theorem 3.2, and the number of periodic patterns of the (unsigned) shift map
is given in Theorem 3.5. For the reverse shift, which is not covered in our main theorem, the number of
periodic patterns is studied in Sections 3.3 and 3.4.

An interesting consequence of our study of periodic patterns is that we obtain new results regarding the
enumeration of cyclic permutations that avoid certain patterns. These are described in Section 4.

1.2 Periodic patterns
Given a linearly ordered set X and a map f : X → X , consider the sequence {f i(x)}i≥0 obtained by
iterating the function starting at a point x ∈ X . If there are no repetitions among the first n elements of
this sequence, called the orbit of x, then we define the pattern of length n of f at x to be

Pat(x, f, n) = st(x, f(x), f2(x), . . . , fn−1(x)),

where st is the operation that outputs the permutation of [n] = {1, 2, . . . , n} whose entries are in the same
relative order as n entries in the input. For example, st(3.3, 3.7, 9, 6, 0.2) = 23541. If f i(x) = f j(x)
for some 0 ≤ i < j < n, then Pat(x, f, n) is not defined. The set of allowed patterns of f is A(f) =
{Pat(x, f, n) : n ≥ 0, x ∈ X}.

We say that x ∈ X is an n-periodic point of f if fn(x) = x but f i(x) 6= x for 1 ≤ i < n. In this case,
the permutation Pat(x, f, n) is denoted PP(x, f), and called the periodic pattern of f at x. Note that if
x is an n-periodic point, then Pat(x, f, i) is not defined for i > n. Let P(f) = {PP(x, f) : x ∈ X} be
the set of periodic patterns of f , and let Pn(f) = P(f) ∩ Sn. For a permutation π = π1π2 . . . πn ∈ Sn,
let [π] = {πiπi+1 . . . πnπ1 . . . πi−1 : 1 ≤ i ≤ n} the set of cyclic rotations of π, which we call the
equivalence class of π. It is clear that if π ∈ P(f), then [π] ⊂ P(f). Indeed, if π is the periodic pattern
at a point x, then the other permutations in [π] are realized at the other points in the periodic orbit of x.
Let Pn(f) = {[π] : π ∈ Pn(f)} denote the set of equivalence classes of periodic patterns of f of length
n, and let pn(f) = |Pn(f)| = |Pn(f)|/n.

Given linearly ordered sets X and Y , two maps f : X → X and g : Y → Y are said to be order-
isomorphic if there is an order-preserving bijection φ : X → Y such that φ ◦ f = g ◦ φ. In this
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case, Pat(x, f, n) = Pat(φ(x), g, n) for every x ∈ X and n ≥ 1. In particular, A(f) = A(g) and
P(f) = P(g).

1.3 Signed shifts
Let k ≥ 2 be fixed, and letWk be the set of infinite words s = s1s2 . . . over the alphabet {0, 1, . . . , k−1}.
Let <lex denote the lexicographic order on these words. We use the notation s[i,∞) = sisi+1 . . . , and
s̄i = k − 1 − si. If q is a finite word, qm denotes concatenation of q with itself m times, and q∞ is an
infinite periodic word.

Fix σ = σ0σ1 . . . σk−1 ∈ {+,−}k. Let T+
σ = {t : σt = +} and T−σ = {t : σt = −}, and note that

these sets form a partition of {0, 1, . . . , k − 1}. We give two definitions of the signed shift with signature
σ, and show that they are order-isomorphic to each other.

The first definition, which we denote by Σ′σ , is the map Σ′σ : (Wk, <lex)→ (Wk, <lex) defined by

Σ′σ(s1s2s3s4 . . . ) =

{
s2s3s4 . . . if s1 ∈ T+

σ ,

s̄2s̄3s̄4 . . . if s1 ∈ T−σ .

It is shown in [1] that Σ′σ is order-isomorphic to the piecewise linear function Mσ : [0, 1]→ [0, 1] defined
for x ∈ [ tk ,

t+1
k ), for each 0 ≤ t ≤ k − 1, as

Mσ(x) =

{
kx− t if t ∈ T+

σ ,

t+ 1− kx if t ∈ T−σ .

As a consequence, the allowed patterns and the periodic patterns of Σ′σ are the same as those of Mσ ,
respectively. A few examples of the function Mσ are pictured in Figure 1.
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Fig. 1: The graphs of Mσ for σ = +−, σ = +++, σ = −−−− and σ = ++−−+, respectively.

The second definition of the signed shift will be more convenient when studying its periodic patterns.
Let ≺σ be the linear order on Wk defined by s = s1s2s3 . . . ≺σ t1t2t3 . . . = t if either s1 < t1,
s1 = t1 ∈ T+

σ and s2s3 . . . ≺σ t2t3 . . ., or s1 = t1 ∈ T−σ and t2t3 . . . ≺σ s2s3 . . .. Equivalently, s ≺σ t
if, letting j ≥ 1 be the smallest such that sj 6= tj , either c := |{1 ≤ i < j : si ∈ T−σ }| is even and
sj < tj , or c is odd and sj > tj . The signed shift is the map Σσ : (Wk,≺σ)→ (Wk,≺σ) defined simply
by Σσ(s1s2s3s4 . . . ) = s2s3s4 . . . .

To show that the two definitions of the signed shift as Σσ and Σ′σ are order-isomorphic, consider the
order-preserving bijection ψσ : (Wk,≺σ) → (Wk, <lex) that maps a word s = s1s2s3 . . . to the word
a = a1a2a3 . . . where

ai =

{
si if |{j < i : sj ∈ T−σ }| is even,
s̄i if |{j < i : sj ∈ T−σ }| is odd.
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It is easy to check that ψσ ◦ Σσ = Σ′σ ◦ ψσ , and so P(Σσ) = P(Σ′σ). From now on we use the second
definition Σσ only. The n-periodic points of Σσ are the words of the form s = (s1s2s3 . . . sn)∞ where
s1s2 . . . sn is a primitive word (sometimes called aperiodic word), that is, not a concatenation of copies of
a strictly shorter word. Counting these words up to cyclic rotation, we obtain the following result, where
µ denotes the Möbius function.

Lemma 1.1 If σ ∈ {+,−}k, where k ≥ 2, the number of periodic orbits of size n of Σσ is

Lk(n) =
1

n

∑
d|n

µ(d)k
n
d .

For example, if σ = + − −, then s = (00110221)∞ is an 8-periodic point of Σσ , and PP(s,Σσ) =
12453786, so 12453786 ∈ P(Σ+−−). One of our main goals is to characterize the sets P(Σσ).

If σ = +k, then ≺σ is the lexicographic order <lex, and Σσ is called the k-shift. When σ = −k, the
map Σσ is called the reverse k-shift. When σ = +−, the map Σσ is the well-known tent map.

1.4 Pattern avoidance
Let Sn denote the set of permutations of [n], and let S =

⋃
n≥0 Sn. We write permutations in one

line notation as π = π1π2 . . . πn ∈ Sn. We say that τ ∈ Sn contains ρ ∈ Sm if there exist indices
i1 < i2 < · · · < im such that st(τi1τi2 . . . τim) = ρ1ρ2 . . . ρm. Otherwise, we say that τ avoids ρ. If
A is a set of permutations, we denote by A (ρ) the set of permutations in A avoiding ρ, and we define
A (ρ(1), ρ(2), . . . ) analogously as the set of permutations avoiding all the patterns ρ(1), ρ(2), . . . . We say
that A is a (permutation) class if it is closed under pattern containment, that is, if τ ∈ A and τ contains
ρ, then ρ ∈ A . Sets of the form S(ρ(1), ρ(2), . . . ) are permutation classes.

Given classes A0,A1, . . . ,Ak−1, their juxtaposition, denoted [A0 A1 . . . Ak−1], is the set of permuta-
tions that can be expressed as concatenations α0α1 . . . αk−1 where st(αt) ∈ At for all 0 ≤ t < k. For ex-
ample, [S(21)S(12)] is the set of unimodal permutations, i.e., those π ∈ Sn satisfying π1 < π2 < · · · <
πj > πj+1 > · · · > πn for some 1 ≤ j ≤ n. The juxtaposition of permutation classes is again a class, and
as such, it can be characterized in terms of pattern avoidance. For example, [S(21)S(12)] = S(213, 312).
Atkinson [5] showed that if At can be characterized by avoidance of a finite set of patterns for each t, then
the same is true for [A0 A1 . . . Ak−1].

Let σ = σ0σ1 . . . σk−1 ∈ {+,−}k as before. We let Sσ = [A0 A1 . . . Ak−1] where, for 0 ≤ t < k,

At =

{
S(21) if σt = +,

S(12) if σt = −.

Let Sσn = Sσ ∩ Sn. Figure 2 shows two permutations in S+−−. Note that since the empty permutation
belongs to S(21) and to S(12), it is trivial that S+−− ⊂ S+−+−, for example.

We denote by Cn (respectively, Cσ , Cσn ) the set of cyclic permutations in Sn (respectively, Sσ , Sσn ). In
Figure 2, the permutation on the right is in Cσ . It will be useful to define the map

θ : Sn → Cn
π 7→ π̂,

where if π = π1π2 . . . πn in one-line notation, then π̂ = (π1, π2, . . . , πn) in cycle notation, that is, π̂
is the cyclic permutation that sends π1 to π2, π2 to π3, and so on. Writing π̂ = π̂1π̂2 . . . π̂n in one-line
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Fig. 2: Two permutations 3 5 8 9 11 7 6 1 12 10 4 2 and 2 5 9 10 11 8 4 3 1 12 7 6 in S+−− and their cycle structure.

notation, we have that π̂πi
= πi+1 for 1 ≤ i ≤ n, with the convention that πn+1 := π1. The map θ also

plays an important role in [8]. Note that if π ∈ Sn, then θ−1(π̂) = [π], the set of cyclic rotations of π.

2 Description of periodic patterns of the signed shift
The main theorem of this paper is the following characterization of the periodic patterns of the signed
shift Σσ , except in the case of the reverse shift. Throughout the paper we assume that k ≥ 2.

Theorem 2.1 Let σ ∈ {+,−}k, σ 6= −k. Then π ∈ P(Σσ) if and only if π̂ ∈ Cσ .

This theorem, whose proof will require a few lemmas, states that the map θ gives a bijection between
Pn(Σσ) and Cσn . The following lemma describes some conditions satisfied by the periodic patterns of Σσ ,
proving the forward direction of Theorem 2.1.

Lemma 2.2 Let σ ∈ {+,−}k, let π ∈ Pn(Σσ), and let s = (s1 . . . sn)∞ ∈ Wk be such that π =
PP(s,Σσ). For 1 ≤ t ≤ k, let dt = |{i ∈ [n] : si < t}|, and let d0 = 0. The following statements hold.

(a) For every i and t, we have dt < πi ≤ dt+1 if and only if si = t.

(b) If dt < πi < πj ≤ dt+1, then πi+1 < πj+1 if t ∈ T+
σ , and πi+1 > πj+1 if t ∈ T−σ , where

πn+1 := π1.

(c) For 0 ≤ t < k, π̂dt+1 . . . π̂dt+1 is increasing if t ∈ T+
σ and decreasing if t ∈ T−σ . In particular,

π̂ ∈ Cσ .

Proof: Since PP(s,Σσ) = π, it is clear for all a, b ∈ [n], πa < πb implies sa ≤ sb, from where (a)
follows. To prove (b), suppose that dt < πi < πj ≤ dt+1, and so s[i,∞) ≺σ s[j,∞). By part (a), we have
si = sj = t. If t ∈ T+

σ , then s[i+1,∞) ≺σ s[j+1,∞), and so πi+1 < πj+1. Similarly, if t ∈ T−σ , then
s[j+1,∞) ≺σ s[i+1,∞), and so πi+1 > πj+1.

Now let 0 ≤ t < k, and suppose that the indices j such that sj = t are j1, . . . , jm, ordered in such a way
that πj1 < πj2 < · · · < πjm , wherem = dt+1−dt. Then part (a) implies that πj` = dt−1 +` for 1 ≤ ` ≤
m, and part (b) implies that πj1+1 < πj2+1 < · · · < πjm+1 if t ∈ T+

σ , and πj1+1 > πj2+1 > · · · > πjm+1

if t ∈ T−σ . Using that πj`+1 = π̂πj`
= π̂dt+`, this is equivalent to π̂dt+1 < π̂dt+2 < · · · < π̂dt+m if

t ∈ T+
σ , and π̂dt+1 > π̂dt+2 > · · · > π̂dt+m if t ∈ T−σ . Note that dt + m = dt+1. Since π̂ is a cyclic

permutation, this proves that π̂ ∈ Cσ . 2

The next two lemmas will be used in the proof of the backward direction of Theorem 2.1.
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Lemma 2.3 Let σ ∈ {+,−}k, let π ∈ Sn, and suppose that π̂ = π̂e0+1 . . . π̂e1 π̂e1+1 . . . π̂e2 . . . π̂ek ,
where each segment π̂et+1 . . . π̂et+1

is increasing if t ∈ T+
σ and decreasing if t ∈ T−σ (and so π̂ ∈ Cσ).

Suppose that et < πi < πj ≤ et+1 for some 1 ≤ i, j ≤ n. Then πi+1 < πj+1 if t ∈ T+
σ , and πi+1 > πj+1

if t ∈ T−σ , where πn+1 := π1.

Proof: Since et < πi < πj ≤ et+1, both π̂πi
and π̂πj

lie in the segment π̂et+1 . . . π̂et+1
. If t ∈ T+

σ , this
segment is increasing, so πi+1 = π̂πi

< π̂πj
= πj+1. The argument is analogous if t ∈ T−σ . 2

Lemma 2.4 Let σ ∈ {+,−}k be arbitrary. If σ = −k, additionally assume that n 6= 2 mod 4. Let
π ∈ Sn be such that π̂ ∈ Cσ . Then there exist 0 = e0 ≤ e1 ≤ · · · ≤ ek = n such that

(a) each segment π̂et+1 . . . π̂et+1 is increasing if t ∈ T+
σ and decreasing if t ∈ T−σ ; and

(b) the word s1 . . . sn, defined by si = t whenever et < πi ≤ et+1, is primitive, and s = (s1 . . . sn)∞

satisfies PP(s,Σσ) = π.

Furthermore, if σ = +k or σ = −k, then any choice of 0 = e0 ≤ e1 ≤ · · · ≤ ek = n satisfying (a) also
satisfies (b).

Proof: Since π̂ ∈ Cσ , there is some choice of 0 = e0 ≤ e1 ≤ · · · ≤ ek = n such that each segment
π̂et+1 . . . π̂et+1 is increasing if t ∈ T+

σ and decreasing if t ∈ T−σ . Pick one such choice and define
s1 . . . sn as above. In this proof we take the indices of π mod n, that is, we define πi+jn = πi for i ∈ [n].

Suppose that s1 . . . sn is not primitive, so it can be written as qm for some m ≥ 2 and some primitive
word q with |q| = r = n/m. Then, si = si+r for all i. Let g = |{i ∈ [r] : si ∈ T−σ }|. Fix i, and let
t = si = si+r. Because of the way that s1 . . . sn is defined, we must have et < πi, πi+r ≤ et+1, so we
can apply Lemma 2.3 to this pair.

Suppose first that g is even. If πi < πi+r, then applying Lemma 2.3 r times we get πi+r < πi+2r, since
the inequality involving πi+` and πi+r+` switches exactly g times as ` increases from 0 to r. Starting with
i = 1 and applying this argument repeatedly, we see that if π1 < π1+r, then π1 < π1+r < π1+2r < · · · <
π1+(m−1)r < π1+mr = π1, which is a contradiction. A symmetric argument shows that if π1 > π1+r,
then π1 > π1+r > π1+2r > · · · > π1+(m−1)r > π1+mr = π1.

It remains to consider the case that g is odd. If m is even and m ≥ 4, then letting q′ = qq we have
s1s2 . . . sn = (q′)

m
2 . Letting r′ = |q′| = 2r and g′ = |{i ∈ [2r] : si ∈ T−σ }| = 2g, the same argument

as above using r′ and g′ yields a contradiction. If m is odd, suppose without loss of generality that
π1 < π1+r. Applying Lemma 2.3 r times to the inequality πi < πi+r (respectively πi > πi+r) yields
πi+r > πi+2r (respectively πi+r < πi+2r) in this case, since the inequality involving πi+` and πi+r+`
switches an odd number of times. Consider two cases:

• If π1 < π1+2r, then Lemma 2.3 applied repeatedly in blocks of 2r times yields π1 < π1+2r <
π1+4r < · · · < π1+(m−1)r. Applying now Lemma 2.3 r times starting with π1 < π1+(m−1)r gives
π1+r > π1+mr = π1, which contradicts the assumption π1 < π1+r.

• If π1 > π1+2r, applying Lemma 2.3 r times we get π1+r < π1+3r, and by repeated application
of the lemma in blocks of 2r times it follows that π1+r < π1+3r < π1+5r < · · · < π1+(m−2)r <
π1+mr = π1, contradicting again the assumption π1 < π1+r.
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The only case left is when g is odd and m = 2, that is, when s1s2 . . . sn = q2 and q has an odd number
of letters in T−σ . Note that this situation does not happen when σ = +k (since in this case g = 0) and,
although it can happen when σ = −k, in this case we would have that T−σ = {0, 1, . . . , k − 1}, and so
n = 2r = 2g = 2 mod 4, which we are excluding in the statement of the theorem.

Thus, we can assume that there exists some 1 ≤ ` < k such that σ`−1σ` is either +− or −+. We will
show that there is a choice of 0 = e′0 ≤ e′1 ≤ · · · ≤ e′k = n that satisfies the conditions of the lemma, and
the resulting word s′1s

′
2 . . . s

′
n is primitive.

Suppose that σ`−1σ` = +− (the case σ`−1σ` = −+ is very similar). Then, π̂e`−1+1 < · · · < π̂e`
and π̂e`+1 > · · · > π̂e`+1

. If π̂e` < π̂e`+1 (respectively, π̂e` > π̂e`+1), let e′` := e` + 1 (respectively,
e′` := e` − 1), and e′t := et for all t 6= `. Clearly, the values e′t satisfy part (a) of the lemma. Additionally,
the word s′1 . . . s

′
n that they define using part (b) differs from the original word s1s2 . . . sn = q2 by one

entry, making the number of `s that appear in s′1 . . . s
′
n be odd instead of even. Thus, s′1 . . . s

′
n can no

longer be written as (q′)2 for any q′, so it is primitive by the above argument.
Finally, we prove that if we let s = (s1 . . . sn)∞, then PP(s,Σσ) = π. Let 1 ≤ i, j ≤ n with πi < πj .

We need to show that s[i,∞) ≺σ s[j,∞). Let a ≥ 0 be the smallest such that si+a 6= sj+a, and let
h = |{0 ≤ ` ≤ a−1 : s` ∈ T−σ }|. If h is even, then Lemma 2.3 applied a times shows that πi+a < πj+a.
Since si+a 6= sj+a, we must then have si+a < sj+a, by construction of s. Thus, s[i,∞) ≺σ s[j,∞) by
definition of ≺σ , since the word sisi+1 . . . si+a−1 = sjsj+1 . . . sj+a−1 has an even number of letters in
T−σ . Similarly, if h is odd, then Lemma 2.3 shows that πi+a > πj+a. Since si+a 6= sj+a, we must have
si+a > sj+a, and thus s[i,∞) ≺σ s[j,∞) by definition of ≺σ . 2

We can now combine the above lemmas to prove our main theorem.

Proof of Theorem 2.1: If π ∈ P(Σσ), then π̂ ∈ Cσ by Lemma 2.2(c). Conversely, π ∈ Sn is such that
π̂ ∈ Cσ , then the word s given by Lemma 2.4(b) satisfies PP(s,Σσ) = π, and so π ∈ P(Σσ). 2

For σ = −k, the same proof yields the following weaker result.

Proposition 2.5 Let σ = −k. If π ∈ Pn(Σσ), then π̂ ∈ Cσn . Additionally, the converse holds if n 6=
2 mod 4.

Define the reversal of σ = σ0σ1 . . . σk−1 to be σR = σk−1 . . . σ1σ0. If π ∈ Sn, then the complement
of π is the permutation πc where πci = n + 1 − πi for 1 ≤ i ≤ n. The following result, whose proof is
omitted, relates periodic patterns of Σσ and ΣσR .

Proposition 2.6 For every σ ∈ {+,−}k, π ∈ P(Σσ) if and only if πc ∈ P(ΣσR).

3 Enumeration for special cases
For particular values of σ, we can give a formula for the number of periodic patterns of Σσ . This is the
case when σ = +−, σ = +k, and σ = −k, for any k ≥ 2.

3.1 The tent map
We denote the tent map by Λ = Σ+−. The characterization of the periodic patterns of Λ follows from
Theorem 2.1.

Corollary 3.1 π ∈ P(Λ) if and only if π̂ is unimodal.
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Next we give an exact formula for the number of periodic patterns of the tent map.

Theorem 3.2
pn(Λ) =

1

2n

∑
d|n
d odd

µ(d)2
n
d .

Proof: Let On be the set of binary words s = (s1 . . . sn)∞ where s1 . . . sn is primitive and has an odd
number of ones. We will show that the map s 7→ PP(s,Λ) is a bijection between On and Pn(Λ). It is
clear that this map is well defined. We will prove that for each π ∈ Pn(Λ) there are either one or two
periodic binary words s such that PP(s,Λ) = π, and that exactly one of them is in On.

Fix π ∈ Pn(Λ), and recall from Corollary 3.1 that π̂1 < π̂2 < · · · < π̂m > π̂m+1 > · · · > π̂n for
some m. Let s = (s1 . . . sn)∞ be such that PP(s,Λ) = π, and let d = |{1 ≤ i ≤ n : si = 0}|. By
Lemma 2.2(a), we have that si = 0 if and only if πi ≤ d. Suppose now that si = sj and πi < πj .
If si = sj = 0, then πi+1 < πj+1 by Lemma 2.2(b), and so π̂πi

< π̂πj
. Since this holds whenever

1 ≤ πi < πj ≤ d, we see that π̂1 < π̂2 < · · · < π̂d. Similarly, if si = sj = 1, then πi+1 > πj+1 and so
π̂πi > π̂πj . Thus, π̂d+1 > π̂d+2 > · · · > π̂n.

It follows that m = d or m = d + 1, depending on whether π̂d > π̂d+1 or π̂d < π̂d+1. Thus, since
π was fixed, there are two choices for d, namely d = m or d = m − 1. This corresponds to setting si,
where i is such that πi = m, equal to 1 or to 0, respectively. The above argument shows that the rest of
the entries of s are forced by π. For exactly one of these two choices, s1 . . . sn will have an odd number
of ones.

However, as shown in the proof of Theorem 2.1, it is possible for s1 . . . sn constructed as above not to
be primitive. This can only happen when n is even and s1 . . . sn = q2, in which case s1 . . . sn has an even
number of ones. Thus, the choice where s1 . . . sn has an odd number of ones is primitive, so s ∈ On and
it satisfies PP(s,Λ) = π.

Using the Möbius inversion formula, it can be shown that the number of primitive binary words of
length n with an odd number of ones is |On| =

∑
d µ(d)2n/d−1, where the sum is over all odd divisors

of n. Since pn(Λ) = |On|/n, the formula follows. 2

3.2 The k-shift
Recall that the k-shift is the map Σσ where σ = +k. We denote this map by Σk for convenience. The
allowed patterns of the k-shift were characterized and enumerated by Elizalde [8], building up on work
by Amigó et al. [3].

In this section we describe and enumerate the periodic patterns of the k-shift. Denote the descent set of
π ∈ Sn by Des(π) = {i ∈ [n− 1] : πi > πi+1}, and by des(π) = |Des(π)| the number of descents of π.
In the case of the k-shift, Theorem 2.1 states that π ∈ P(Σk) if and only if π̂ is a cyclic permutation that
can be written as a concatenation of k increasing sequences. The following corollary follows from this
description.

Corollary 3.3 π ∈ P(Σk) if and only if des(π̂) ≤ k − 1.

An equivalent statement is that θ gives a bijection between Pn(Σk) and permutations in Cn with at
most k − 1 descents. It will be convenient to define, for 1 ≤ i ≤ n,

C(n, i) = |{τ ∈ Cn : des(τ) = i− 1}|.



Periodic Patterns of Signed Shifts 881

In the rest of this section we assume that n ≥ 2. We start by giving a formula for the number of periodic
patterns of the binary shift. Recall the formula for Lk(n) given in Lemma 1.1.

Theorem 3.4 For n ≥ 2, we have pn(Σ2) = C(n, 2) = L2(n).

Proof: When n ≥ 2, there are no permutations in Cn with no descents, so Corollary 3.3 states that
π ∈ P(Σ2) if and only if des(π̂) = 1. It follows that Pn(Σ2) is in bijection with permutations in Cn with
exactly one descent, so pn(Σ2) = C(n, 2).

Next we show that Pn(Σ2) is also in bijection with the set of periodic orbits of size n of Σ2, and thus
pn(Σ2) = L2(n) by Lemma 1.1. Clearly, to each n-periodic point s = (s1 . . . sn)∞ one can associate the
periodic pattern π = PP(s,Σ2) ∈ Pn(Σ2), so that the n points in the orbit of s give rise to the patterns
in [π]. Conversely, for each π ∈ Pn(Σ2) there is some s ∈ W2 such that PP(s,Σ2) = π. It remains to
show that s is unique. Suppose that Des(π̂) = {j} and that PP(s,Σ2) = π. Letting d be the number of
zeros in s1 . . . sn, we have by Lemma 2.2(c) that π̂1 < · · · < π̂d and π̂d+1 < · · · < π̂n. Thus, d = j, and
so the word s1 . . . sn is uniquely determined by Lemma 2.2(a). 2

Theorem 3.5 For k ≥ 3 and n ≥ 2,

pn(Σk)− pn(Σk−1) = C(n, k) = Lk(n)−
k−1∑
i=2

(
n+ k − i
k − i

)
C(n, i).

Proof: It is clear from Corollary 3.3 that C(n, k) = 1
n |Pn(Σk) \ Pn(Σk−1)| = pn(Σk)− pn(Σk−1).

To prove the recursive formula for C(n, k), we count periodic orbits of size n of Σk in two ways.
On one hand, this number equals Lk(n) by Lemma 1.1. On the other hand, to each such orbit one can
associate an equivalence class [π] ∈ Pn(Σk), consisting of the periodic patterns at the n points of the
orbit.

Fix π ∈ Pn(Σk). We now count how many words s ∈ Wk satisfy PP(s,Σk) = π (equivalently, how
many periodic orbits are associated with [π]). By Lemma 2.4, for each choice of 0 = e0 ≤ e1 ≤ · · · ≤
ek = n such that π̂et+1 . . . π̂et+1

is increasing for all 0 ≤ t < k, the word s defined in part (b) of the
lemma satisfies PP(s,Σk) = π. Conversely, if s = (s1 . . . sn)∞ ∈ Wk is such that PP(s,Σk) = π,
then, by Lemma 2.2(c), each block π̂dt+1 . . . π̂dt+1

is increasing, with dt defined as in the lemma, for
0 ≤ t < k. Thus, finding all the words s ∈ Wk such that PP(s,Σk) = π is equivalent to finding all the
ways to choose 0 = e0 ≤ e1 ≤ · · · ≤ ek = n such that π̂et+1 . . . π̂et+1 is increasing for all 0 ≤ t < k. If
des(π̂) = i − 1, it is a simple exercise to show that there are

(
n+k−i
k−i

)
such choices, since Des(π̂) has to

be a subset of {e1, . . . , ek−1}.
By Corollary 3.3, for each 2 ≤ i ≤ k, the number of equivalence classes [π] ∈ Pn(Σk) where

des(π̂) = i− 1 is C(n, i). It follows that

Lk(n) =

k∑
i=2

(
n+ k − i
k − i

)
C(n, i),

which is equivalent to the stated formula. 2

It follows immediately from Theorem 3.5 that pn(Σk) =
∑k
i=2 C(n, i) for n ≥ 2.
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Let us show an example that illustrates how, in the above proof, the words s ∈ Wk with PP(s,Σk) = π
are constructed for given π. Let k = 5, and let π = 165398427 ∈ P9(Σ5). Then π̂ = 679235148, which
has descent set Des(π̂) = {3, 6}. Choosing e1 = 3, e2 = 6, e3 = e4 = 9, Lemma 2.4 gives the word
s1 . . . s9 = 011022102. Choosing e1 = 2, e2 = 3, e3 = 6, e4 = 7, we get s1 . . . s9 = 022144203.

The second equality in Theorem 3.5 also follows from a result of Gessel and Reutenauer [11, Theorem
6.1], which is proved using quasi-symmetric functions.

3.3 The reverse k-shift, when n 6= 2 mod 4

The reverse k-shift is the map Σσ where σ = −k. We denote this map by Σ−k in this section. Denote
the ascent set of π ∈ Sn by Asc(π) = {i ∈ [n − 1] : πi < πi+1}, and the number of ascents of π by
asc(π) = |Asc(π)| = n− 1− des(π).

Proposition 2.5 gives a partial characterization of the periodic patterns of Σ−k . For patterns of length
n 6= 2 mod 4, it states that π ∈ Pn(Σ−k ) if and only if π̂ can be written as a concatenation of k decreasing
sequences. The next corollary follows from this description. The case n = 2 mod 4 will be discussed in
Section 3.4.

Corollary 3.6 Let π ∈ Sn, where n 6= 2 mod 4. Then π ∈ P(Σ−k ) if and only if asc(π̂) ≤ k − 1.

To enumerate periodic patterns of Σ−k of length n 6= 2 mod 4, we use an argument very similar to the
one we used for Σk. For 1 ≤ i ≤ n, let C ′(n, i) = |{τ ∈ Cn : asc(τ) = i − 1}|. By definition, we have
C ′(n, i) = C(n, n−i+1). The proofs of the following two theorems are similar to those of Theorems 3.4
and 3.5, and thus omitted from this extended abstract.

Theorem 3.7 For n ≥ 3 with n 6= 2 mod 4, we have pn(Σ−2 ) = C ′(n, 2) = L2(n).

Theorem 3.8 For n ≥ 3 with n 6= 2 mod 4 and k ≥ 3,

pn(Σk)− pn(Σk−1) = C ′(n, k) = Lk(n)−
k−1∑
i=2

(
n+ k − i
k − i

)
C ′(n, i).

Combining Theorems 3.4, 3.5, 3.7 and 3.8, we obtain the following.

Corollary 3.9 For n 6= 2 mod 4 and 2 ≤ k ≤ n, we have C(n, k) = C ′(n, k).

This equality is equivalent to the symmetry C(n, k) = C(n, n− 1− k), which is not obvious from the
recursive formula in Theorem 3.5. Corollary 3.9 also follows from a more general result of Gessel and
Reutenauer [11, Theorem 4.1], which states that if n 6= 2 mod 4, then for any D ⊆ [n− 1],

|{τ ∈ Cn : Des(τ) = D}| = |{τ ∈ Cn : Asc(τ) = D}|. (1)

Their proof involves quasi-symmetric functions. Even though describing a direct bijection proving Eq. (1)
remains an open problem, our construction can be used to give the following bijection between {τ ∈ Cn :
Des(τ) ⊆ D} and {τ ∈ Cn : Asc(τ) ⊆ D}.

Given π̂ ∈ Cn such that Des(π̂) ⊆ D = {d1, d2, . . . , dk−1}, let π ∈ Sn be such that θ(π) = π̂ and
π1 = 1. Let s = (s1 . . . sn)∞ ∈ Wk be defined by si = t if dt < πi ≤ dt+1, for 1 ≤ i ≤ n, where we let
d0 = 0 and dk = n. Let π′ = PP(s,Σ−k ). Then π̂′ = θ(π′) ∈ Cn, Asc(π̂′) ⊆ D, and the map π̂ 7→ π̂′

gives the desired bijection.
Another consequence of Theorem 3.8 is that pn(Σ−k ) =

∑k
i=2 C

′(n, k) = pn(Σk) when n 6= 2 mod 4.
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3.4 The reverse k-shift, when n = 2 mod 4

When n = 2 mod 4, the results in Section 3.3 no longer hold. Corollary 3.6 fails in that there are certain
permutations π ∈ Sn with asc(π̂) ≤ k − 1 that are not periodic patterns for Σ−k . For the binary case, the
number of periodic patterns of Σ−2 is given next.

Theorem 3.10 For n ≥ 3 with n = 2 mod 4,

pn(Σ−2 ) = L2(n) = C ′(n, 2)− C ′(n/2, 2).

The proof of this theorem, which we omit due to lack of space, is based in the following idea. By
Proposition 2.5, the map θ gives an injection from Pn(Σ−2 ) to the set {τ ∈ Cn : asc(τ) = 1}. To show
that the number of cycles with one ascent that are not in the image of this map is precisely C ′(n/2, 2),
we give a bijection with primitive binary necklaces of length r, constructed by analyzing how Lemma 2.4
fails when n = 2 mod 4. From Theorems 3.4, 3.7 and 3.10, we get the following.

Corollary 3.11

C ′(n, 2) =

{
C(n, 2) + C(n/2, 2) n = 2 mod 4

C(n, 2) n 6= 2 mod 4

For k ≥ 3, the number of periodic patterns is given in the next theorem, whose proof is omitted.

Theorem 3.12 For n ≥ 3 with n = 2 mod 4 and k ≥ 3,

pn(Σ−k ) =

k∑
i=2

C ′(n, i)− C ′(n/2, k).

Since n/2 is odd in this case, C ′(n/2, k) is easily computed by the recurrence in Theorem 3.8. To
compute C ′(n, i), one can use the following recurrence.

Theorem 3.13 For n ≥ 3 with n = 2 mod 4 and k ≥ 3,

C ′(n, k) = Lk(n)−
k−1∑
i=2

[(
n+ k − i
k − i

)
C ′(n, i)−

(
n/2 + k − i

k − i

)
C ′(n/2, i)

]
+ C ′(n/2, k).

4 Pattern-avoiding cyclic permutations
The enumeration of pattern-avoiding cycles is a wide-open problem, part of its difficulty stemming from
the fact that it combines two different ways to look at permutations: in terms of their cycle structure and
in terms of their one-line notation. The question of finding a formula for |Cn(σ)| where σ is a pattern of
length 3 was proposed by Richard Stanley and is still open. However, using Theorem 2.1, the formulas
that we have found for the number of periodic patterns of the tent map, the k-shift and the reverse k-shift
translate into the following related results.

Theorem 4.1 For n ≥ 2,

|Cn(213, 312)| = 1

2n

∑
d|n
d odd

µ(d)2n/d, |Cn(321, 2143, 3142)| = 1

n

∑
d|n

µ(d)2n/d,
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|Cn(123, 2413, 3412)| =


1

n

∑
d|n

µ(d)2n/d if n 6= 2 mod 4,

1

n

∑
d|n

µ(d)2n/d +
2

n

∑
d|n2

µ(d)2n/2d if n = 2 mod 4.

Proof: The formula for |Cn(213, 312)| is a consequence of Theorem 3.2 and Corollary 3.1, together
with the fact that a permutation is unimodal if and only if it avoids 213 and 312. The second for-
mula follows from Theorem 3.4, using that the set of permutations with at most one descent is S++ =
S(321, 2143, 3142) (see [5]). Finally, the third formula is a consequence of Corollary 3.11 and Theo-
rem 3.4, noting that the class of permutations with at most one ascent is S(123, 2413, 3412). 2
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