
FPSAC 2013 Paris, France DMTCS proc. AS, 2013, 1065–1076

Coefficients of algebraic functions: formulae
and asymptotics

Cyril Banderier1†and Michael Drmota2‡

1LIPN (UMR CNRS 7030), Université Paris 13, France
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Abstract. This paper studies the coefficients of algebraic functions. First, we recall the too-little-known fact that these
coefficients fn have a closed form. Then, we study their asymptotics, known to be of the type fn ∼ CAnnα. When
the function is a power series associated to a context-free grammar, we solve a folklore conjecture: the appearing
critical exponents α can not be 1/3 or −5/2, they in fact belong to a subset of dyadic numbers. We extend what
Philippe Flajolet called the Drmota–Lalley–Woods theorem (which is assuring α = −3/2 as soon as a ”dependency
graph” associated to the algebraic system defining the function is strongly connected): We fully characterize the
possible critical exponents in the non-strongly connected case. As a corollary, it shows that certain lattice paths
and planar maps can not be generated by a context-free grammar (i.e., their generating function is not N-algebraic).
We end by discussing some extensions of this work (limit laws, systems involving non-polynomial entire functions,
algorithmic aspects).

Résumé. Cet article a pour héros les coefficients des fonctions algébriques. Après avoir rappelé le fait trop peu connu
que ces coefficients fn admettent toujours une forme close, nous étudions leur asymptotique fn ∼ CAnnα. Lorsque
la fonction algébrique est la série génératrice d’une grammaire non-contextuelle, nous résolvons une vieille conjecture
du folklore : les exposants critiques α ne peuvent pas être 1/3 ou −5/2 et sont en fait restreints à un sous-ensemble
des nombres dyadiques. Nous étendons ce que Philippe Flajolet appelait le théorème de Drmota–Lalley–Woods (qui
affirme que α = −3/2 dès lors qu’un ”graphe de dépendance” associé au système algébrique est fortement connexe) :
nous caractérisons complètement les exposants critiques dans le cas non fortement connexe. Un corolaire immédiat
est que certaines marches et cartes planaires ne peuvent pas être engendrées par une grammaire non-contextuelle non
ambigüe (i. e., leur série génératrice n’est pas N-algébrique). Nous terminons par la discussion de diverses extensions
de nos résultats (lois limites, systèmes d’équations de degré infini, aspects algorithmiques).
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1 Introduction
The theory of context-free grammars and its relationship with combinatorics was initiated by the article of
Noam Chomsky and Marcel-Paul Schützenberger in 1963 [CS63], where it is shown that the generating
function of the number of words generated by a non ambiguous context-free grammar is algebraic. Since
then, there has been much use of algebraic functions in combinatorics, see e.g. [Sta99, BM06, FS09].

Quite often, they come from a tree-like structure (dissections of polygons: a result going back to Eu-
ler in 1751, one of the founding problems of analytic combinatorics!), or from a grammar description
(polyominoes [DV84], lattice paths [Duc00]), or from the ”diagonal” of rational functions [BH12], or as
solution of functional equations (solvable by the kernel method and its variants, e.g. for avoiding-pattern
permutations [Knu98]). Their asymptotics is crucial for establishing (inherent) ambiguity of context-free
languages [Fla87], for the analysis of lattice paths [BF02], walks with an infinite set of jumps [Ban02]
(which are thus not coded by a grammar on a finite alphabet), or planar maps [BFSS01].

Plan of this article:

• In Section 2, we give a few definitions, mostly illustrating the link between context-free grammars,
solutions of positive algebraic systems and N-algebraic functions.

• In Section 3, we survey some closure properties of algebraic functions and give a closed form for
their coefficients.

• In Section 4, we state and sketch a proof of our main theorem on the possible asymptotics of
algebraic functions (associated to a context-free grammar with positive weights).

• We end with a conclusion pinpointing some extensions (limit laws, algorithmic considerations,
extension to infinite systems, or systems involving entire functions).

2 Definitions: N-algebraic functions, context-free grammars and
pushdown automata

For the notions of automata, pushdown automata, context-free grammars, we refer to the survey [PS09].
Another excellent compendium on the subject is the handbook of formal languages [RS97] and the
Lothaire trilogy. We now consider S-algebraic functions, that is, a function y1(z) that is solution of a
system(i): 

y1 = P1(z, y1, . . . , yd)
...
yd = Pd(z, y1, . . . , yd)

(1)

where each polynomial Pi has coefficients in any set S (in this article, we consider S = N, Z, Q+, or
R+). We restrict (with only minor loss of generality) to systems satisfying: Pi(0, . . . , 0) = 0, each Pi
is involving at least one yj , the coefficient of yj in Pi(0, . . . , 0, yj , 0 . . . , 0) is 0, and there is at least one
Pi(z, 0, . . . , 0) which is not 0. Such systems are called ”well defined” (or ”proper” or ”well founded” or
”well posed”, see [BD13]), and correspond to proper context-free grammars for which one has no ”infinite
(i) In this article, we will often summarize the system (1) via the convenient short notation y = P(z,y), where bold fonts are used

for vectors.
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chain rules”. On the set of power series, d(F (z), G(z)) := 2−val(F(z)−G(z)) is an ultrametric distance, this
distance extends to vectors of functions, and allows to apply the Banach fixed-point theorem: it implies
existence and uniqueness of a solution of the system as a d-tuple of power series (y1, . . . , yd) (and they
are analytic functions in 0, as we already know that they are algebraic by nature). A common mistake is
to forget that there exist situations for which the system (1) can admit several solutions as power series
for y1 (nota bene: there is no contradiction with our previous claim, which is considering tuples). By
elimination theory (resultant or Gröbner bases), S-algebraic functions are algebraic functions.

We give now few trivial/folklore results: N-algebraic functions correspond to generating functions of
context-free grammars (this is often called the Chomsky–Schützenberger theorem), or, equivalently, push-
down automata (via e.g. a Greibach normal form). Z-algebraic functions have no natural simple combi-
natorial structures associated to them, but they are the difference of two N-algebraic functions (as can be
seen by introducing new unknowns splitting in two the previous ones, and writing the system involving
positive coefficients on one side, and negative coefficients on the other side). They also play an important
rôle as any algebraic generating with integer coefficients can be considered as a Z-algebraic function. An
N-rational function is a function solution of a system (1) where each polynomial Pi has coefficients in
N and only linear terms in yj . Such functions correspond to generating functions of regular expressions
or, equivalently, automata (a result essentially due to Kleene), and formula for their coefficients and their
asymptotics are well-known, so we restrict from now on our attention to N-algebraic functions which are
not rational.

3 Closed form for coefficient of algebraic function

A first natural question is how can we compute the n-th coefficient fn of an algebraic power series? An
old theorem due to Abel states that algebraic functions are D-finite functions. A function F (z) is D-
finite if it satisfies a differential equation with coefficients which are polynomials in z; equivalently, its
coefficients fn satisfy a linear recurrence with coefficients which are polynomials in n. They are numerous
algorithms to deal with this important class of functions, which includes a lot of special functions from
physics, number theory and also combinatorics [Sta99]. The linear recurrence satisfied by fn allows to
compute in linear time all the coefficients f0, . . . , fn.

A less known fact is that these coefficients admit a closed form expression as a finite linear combination
of weighted multinomial numbers. More precisely, one has the following theorem:

Theorem 1 (The Flajolet–Soria formula for coefficients of algebraic function) LetP (z, y) be a bivari-
ate polynomial such that P (0, 0) = 0, Py(0, 0) = 0 and P (z, 0) 6= 0. Consider the algebraic function
implicitly defined(ii) by f(z) = P (z, f(z)) and f(0) = 0. Then, the Taylor coefficients of f(z) are given
by the following finite sum

fn =
∑
m≥1

1

m
[znym−1]Pm(z, y). (2)

(ii) If an algebraic function f(z) with f(0) = 0 satisfies Q(z, f(z)) = 0, where Q(z, y) is a polynomial with Q(0, 0) = 0
and Qy(0, 0) 6= 0 then f(z) satisfies the equation f(z) = P (z, f(z)), where P (z, y) = y − Q(y, z)/Qy(0, 0) satisfies
P (0, 0) = 0 and Py(0, 0) = 0.
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Accordingly, applying the multinomial theorem on P (z, y) =
∑d
i=1 aiz

biyci leads to

fn =
∑
m≥1

1

m

∑
m1+···+md=m

b1m1+···+bdmd=n
c1m1+···+cdmd=m−1

(
m

m1, . . . ,md

)
a1
m1 . . . ad

md . (3)

Proof: Consider y = P (z, y) as the perturbation at u = 1 of the equation y = uP (z, y). Then, applying
the Lagrange inversion formula (considering u as the main variable, and z as a fixed parameter) leads to
the theorem. The second formula comes from the definition of the multinomial number, which is is the
number of ways to divide m objects into d groups, of cardinality m1, . . . ,md (with m1+ · · ·+md = m):
[u1

m1 . . . ud
md ](u1 + · · ·+ ud)

m =
(

m
m1,...,mk

)
= m!

m1!...md!
. 2

This Flajolet–Soria formula was first published in the habilitation thesis of Michèle Soria in 1990 (and
was later rediscovered independently by Gessel and Sokal).

As it is an alternating sign nested sum (indeed, as one reduces the set of positive equations describing
our N-algebraic function to a single equation, the elimination process will lead to some non positive ai’s),
it is not suitable to get general asymptotics from this formula, so we now proceed with another approach,
which leads to a nice universal result for the critical exponents, but to the price of a rather technical proof.

4 Asymptotics for coefficients of algebraic function
A Puiseux series f = f(z) is a series of the form f =

∑∞
k=k0

ak(z − z0)k/N , where k0 is an integer, N
a positive integer. Let kc := min{k ∈ Z − {0}|ak 6= 0}, then α = kc/N is called the critical exponent
(loosely speaking, α is the “first non zero exponent” appearing in the series, and if z0 is not precised,
it is by default the radius of convergence of f(z)). The theory of Puiseux expansions (or the theory of
G-functions) implies that every algebraic function has a Puiseux series expansion and, thus, the critical
exponents are rational numbers. The following proposition shows that all rational numbers are reached.

Theorem 2 (Q is the set of critical exponents) For every rational number α that is not a positive integer
there exists an algebraic power series with positive integer coefficients for which its Puiseux expansion at
the radius of convergence has exactly the critical exponent α.

Proof: First consider F (z) := 1−(1−a2z)1/a
z , where a is any positive or negative integer. Accordingly, its

coefficients are given by fn =
(
1/a
n+1

)
a2n+1(−1)n. The proof that the fn are positive integers was proven

in [Lan00], via a link with a variant of Stirling numbers. We give here a simpler proof: first, via the Newton
binomial theorem, the algebraic equation for F (z) is F (z) = 1 +

∑a
k=2

(
a
k

)
ak−2 (−1)k zk−1 (F (z))

k
.

Then, if one sees this equation as a fixed point equation (as a rewriting rule in the style of context-free
grammars), it is obvious that the fn’s belong to Z. But as fn+1 = a (an+(a−1))fn

n+2 , it is clear that the
fn’s are finally positive integers. Finally, if b is any positive integer (such that b is not a multiple of a),
considering G(z) = e(zF (z) − 1)b (where e = 1 if a > b mod (2a) and e = −1 elsewhere) leads to
a series with integer coefficients (because of the integrality of the coefficients of F ), positive coefficients
(excepted a few of its first coefficients, for some monomials of degree less than b, as it comes from
the Newton binomial expansion). Removing these negative coefficients gives a power series with only
positive integer coefficients, with a Puiseux expansion of the form (1− a2z)b/a. 2
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One may then wonder if there is something stronger. For example, is it the case that for any radius
of convergence, any critical exponent is possible? It happens not to be the case, as can be seen via a
result of Fatou: a power series with integer coefficients and radius of convergence 1 is either rational or
transcendental. However, one has the following neat generic behavior:

Theorem 3 (First main result: dyadic critical exponents for N-algebraic function) The critical expo-
nent of an N-algebraic (or even R+-algebraic) function is either 2−k for some k ≥ 1 or−m2−k for some
m ≥ 1 and some k ≥ 0.

If f1(z) is aperiodic, that is, the radius of convergence ρ is the only singularity on the circle of convergence
|z| = ρ then the transfer principle of Flajolet and Odlyzko [FO90] implies that the coefficients fn =
[zn] f1(z) are asymptotically given by fn ∼ Aρ−nn−1−α, when α is the critical exponent. In the general
(non-aperiodic) case, we have to distinguish between residue classes but the asymptotics are still of the
same form (when we restrict to these residue classes).

Theorem 4 (Second main result: asymptotics for coefficients of N-algebraic function) Let f1(z) be the
power series expansion of a well defined N-algebraic (or even R+-algebraic) system y = P(z,y). Then
there is an integer M ≥ 1 such that for every j ∈ {0, 1, . . . ,M − 1} we either have fn = 0 for all (but
finitely many) n with n ≡ j modM or there exist positive numbers Aj , ρj and βj that is either−1−2−k

for some k ≥ 1 or −1 +m2−k for some m ≥ 1 and some k ≥ 0 such

fn ∼ Ajρ−nj nβj , (n→∞, n ≡ j modM).

It is easy to see that all possible exponents actually appear.

Proposition 1 All the dyadic numbers of Theorem 3 appear as critical exponents of N-algebraic func-
tions.

Proof: Let us first consider the system of equations y1 = z(y2 + y21), y2 = z(y3 + y22), y3 = z(1 + y23)
has the following (explicit) solution

f1(z) =
1− (1− 2z)1/8

√
2z
√
2z
√
1 + 2z +

√
1− 2z + (1− 2z)3/4

2z

f2(z) =
1− (1− 2z)1/4

√
2z
√
1 + 2z +

√
1− 2z

2z
and f3(z) =

1−
√
1− 4z2

2z
.

Here f1(z) has dominant singularity (1 − 2z)1/8 and it is clear that this example can be generalized:
indeed, consider the system yi = z(yi+1+y

2
i ) for i = 1, . . . , k−1, and yk = z(1+y2k), it leads to behavior

(1 − 2z)2
−k

for each k ≥ 1. Now, taking the system of equations y = z(ym0 + y), y0 = z(1 + 2y0y1)

leads to a behavior (1 − 2z)−m2−k

for each m ≥ 1 and k ≥ 0. See also [TB12] for another explicit
combinatorial structure (a family of colored tree related to a critical composition) exhibiting all these
critical exponents. 2

On the other hand, we can use the result of Theorems 3 and 4 to identify classes that cannot be counted
with the help of an N- (or R+-)algebraic system.

Proposition 2 Planar maps and several families of lattice paths (like Gessel walks) are not N-algebraic
(i.e., they can not be generated by an unambiguous context-free grammar).



1070 Cyril Banderier and Michael Drmota

Proof: This comes as a nice consequence of our Theorem 3: all the families of planar maps of [BFSS01]
cannot be generated by an unambiguous context-free grammar, because of their critical exponent 3/2.
Also, the tables [BK09] of lattice paths in the quarter plane and their asymptotics (where some of the
connection constants are guessed, but all the critical exponents are proved, and this is enough for our
point) allow to prove that many sets of jumps are giving a non algebraic generating function, as they
lead to a critical exponent which is a non-negative integer or involving 1/3. One very neat example are
Gessel walks (their algebraicity were a nice surprise [BK10]), where the hypergeometric formula for their
coefficients leads to an asymptotic in 4n/n2/3 not compatible with N-algebraicity. (iii) 2

The critical exponents −1/4,−3/4,−5/4 which appear for walks on the slit plane [BMS02] and other
lattice paths questions [BK10] are compatible with N-algebraicity, but these lattice paths are in fact not
N-algebraic (it is possible to use Ogden’s pumping lemma, to prove that these walks can be not generated
by a context-free grammar). To get a constructive method to decide N-algebraicity (input: a polynomial
equation, output: a context-free specification, whenever it exists) is a challenging task.

We now dedicate the two next subsections to the proof of Theorem 3. The proof of Theorem 4 is a
considerable extension, where (at least) all singularities on the circle of convergence have to identified
(see [BD13]). Due to space limitation we do not work out the latter proof in this extended abstract.

4.1 Dependency graph and auxiliary results
A main ingredient of the proof of Theorem 3 is the analysis of the dependency graph G of the system
yj = Pj(z, y1, . . . , yK), 1 ≤ j ≤ K. The vertex set is {1, . . . ,K} and there is a directed edge from i to
j if Pj depends on yi (see Figure 1). If the dependency graph is strongly connected then we are in very
special case of Theorem 3, for which one has one the following two situations (see [Drm97]):

Lemma 1 (rational singular behavior) Let y = A(z)y+B(z) a positive and well defined linear system
of equations, where the dependency graph is strongly connected. Then the functions fj(z) have a joint
polar singularity ρ or order one as the dominant singularity, that is, the critical exponent is −1:

fj(z) =
cj(z)

1− z/ρ
,

where cj(z) is non-zero and analytic at z = ρ.

Lemma 2 (algebraic singular behavior) Let y = P(z,y) a positive and well defined polynomial system
of equations that is not affine and where the dependency graph is strongly connected. Then the functions
fj(z) have a joint square-root singularity ρ as the dominant singularity, that is, the critical exponent is
1/2:

fj(z) = gj(z)− hj(z)
√
1− z

ρ
,

where gj(z) and hj(z) are non-zero and analytic at z = ρ.

In the proof of Theorem 3 we will use in fact extended version of Lemma 1 and 2, where we intro-
duce additional (polynomial) parameters, that is, we consider systems of functional equations of the form

(iii) The fact that critical exponents involving 1/3 were not possible was an informal conjecture in the community for years. We thank
Philippe Flajolet, Mireille Bousquet-Mélou and Gilles Schaeffer, who encouraged us to work on this question.
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y1 = P1(z, y1, y2, y5)

y2 = P2(z, y2, y3, y5)

y3 = P3(z, y3, y4)

y4 = P4(z, y3, y4)

y5 = P5(z, y5, y6)

y6 = P6(z, y5, y6).

2 5 6

3 4

1

2 5,6

3,4

1

Fig. 1: A positive system, its dependency graph G and its reduced dependency graph G̃. None of these graphs
are here strongly connected: e.g. the state 1 is a sink; it is thus a typical example of system not covered by the
Drmota–Lalley–Woods theorem, but covered by our new result implying dyadic critical exponents.

y = P(z,y,u), where P is now a polynomial in z,y,u with non-negative coefficients and where the de-
pendency graph (with respect to y) is strongly connected. We also assume that u is strictly positive such
that the spectral radius of the Jacobian Py(0, f(0,u),u) is smaller than 1.(iv) Hence, we can consider the
solution that we denote by f(z,u).

If we are in the affine setting (y = A(z,u)y+B(z,u)) it follows that y(z,u) has a polar singularity:

fj(z,u) =
cj(z,u)

1− z/ρ(u)
, (4)

where the functions ρ(u) and cj(z,u) are non-zero and analytic. We have to distinguish two cases. If
A(z,u) = A(z) does not depend on u then ρ(u) = ρ is constant and the dependence from u just comes
from B(z,u). Of course, if A(z,u) depends on u then ρ(u) is not constant. More precisely it depends
exactly on those parameters that appear in A(z,u).

Similarly in the non-affine setting we obtain representations of the form

fj(z,u) = gj(z,u)− hj(z,u)
√

1− z

ρ(u)
, (5)

where the functions ρ(u), gj(z,u), and hj(z,u) are non-zero and analytic. In this case ρ(u) is always
non-constant and depends on all parameters.

We denote by D0 the set of positive real vectors u, for which r(Py(0, f(z,0),u)) < 1. It is easy to
show that ρ(u) tends to 0 when u approaches the boundary of D0.

4.2 Proof of our Theorem 3 on dyadic critical exponents
We fix some notation. Let G denote the dependency graph of the system and G̃ the reduced dependency
graph. Its vertices are the strongly connected components C1, . . . CL of G. We can then reduce the
dependency graph to its components (see Figure 1).

Let y1, . . . ,yL denote the system of vectors corresponding to the components C1, . . . CL and let
u1, . . . ,uL denote the input vectors related to these components. In the above example, we have C1 =

(iv) This condition assures that we have a unique analytic solution z 7→ f(z,u) locally around z = 0.
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{1}, C2 = {2}, C3 = {3, 4}, C4 = {5, 6}, y1 = y1, y2 = y2, y3 = (y3, y4), y4 = (y5, y6), and
u1 = (y2, y5), u2 = (y3, y5), u3 = ∅, u4 = ∅.

Finally, for each component C` we define the set D` of real vectors u` for which the spectral radius of
the Jacobian of `-th subsystem evaluated at z = 0, y` = 0 is smaller than 1.

The first step we for each strongly connected component C` we solve the corresponding subsystem
in the variables z and u` and obtain solutions f(z,u`), 1 ≤ ` ≤ L. In our example these are the
functions f1(z,u1) = f1(z, y2, y5), f2(z,u2) = f2(z, y3, y5), f3(z,u3) = (f3(z), f4(z)), f4(z,u4) =
(f5(z), f6(z)).

Since the dependency graph G̃ is acyclic, there are components C`1 , . . . , C`m with no input, that is,
they corresponding functions y`1(z), . . . ,y`m(z) can be computed without any further information. By
Lemma 1 and 2 they either have a polar singularity or a square-root singularity, that is, they are are
precisely of the types that are stated in Theorem 3.

Now we proceed inductively. We consider a strongly connected component C` with the function
f`(z,u`) and assume that all the functions fj(z) that are contained in u` are already known and and
that their leading singularities of the two types stated in Theorem 3: the solutions fj(z) have positive and
finite radii of convergence ρj . Furthermore, the singular behavior of fj(z) around ρj is either of algebraic
type

fj(z) = fj(ρj) + cj(1− z/ρj)2
−kj

+ c′j(1− z/ρj)2·2
−kj

+ · · · , (6)

where cj 6= 0 and where kj is a positive integer or of type

fj(z) =
dj

(1− z/ρj)mj2
−kj

+
d′j

(1− z/ρj)(mj−1)2−kj
+ · · · , (7)

where dj 6= 0, mj are positive integers and kj are non-negative integers.
By the discussion following Lemma 1 and 2 it follows that functions contained in f`(z,u`) have either

a common polar singularity or a common square-root singularity ρ(u`).
We distinguish between three cases:

1. f`(z,u`) comes from an affine system and is, thus, of the form (4) but the function ρ(u`) is constant.

2. f`(z,u`) comes from an affine system and the function ρ(u`) is not constant.

3. f`(z,u`) comes from an non-affine system and is, thus, of the form (5).

ad 1. The first case is very easy to handle. We just have to observe that c(z,u`) is a polynomial with
non-negative coefficients in u` and that the class of admissible functions (that is, functions, where
the critical exponent at the radius of convergence is either 2−k for some k ≥ 1 or −m2−k for some
m ≥ 1 and some k ≥ 0) is closed under addition and multiplication. Hence the resulting function
f`(z) is of admissible form.

ad 2. In the second, we have to be more careful. Let J ′` denote the set of j for which the function ρ(u`)
really depends on.

First we discuss the denominator. For the sake of simplicity we will work with the difference
ρ(uj) − z. Let ρ′ denote the smallest radius of convergence of the functions fj(z), j ∈ J ′`. Then
we consider the difference δ(z) = ρ((fj(z))j∈J′`)− z. We have to consider the following cases for
the denominator:
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2.1. δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ′′))j∈J′` ∈ D`:
First we note that δ(z) has at most one positive zero since ρ((fj(z))j∈J′`) is decreasing and
z is increasing. Furthermore, the derivative satisfies δ′(ρ′′) > 0. Consequently, we have a
simple zero ρ′′ in the denominator.

2.2. We have δ(ρ′) = 0 such that (fj(ρ′))j∈J′` ∈ D`:
In this case all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be of type (6). Consequently

δ(z) behaves like c(1− z/ρ′)2−k̃

+ . . ., where c > 0 and k̃ is the largest appearing kj (among
those functions fj(z) with ρj = ρ′).

2.3. We have δ(ρ′) > 0 such that (fj(ρ′))j∈J′` ∈ D`:
In this case, all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be (again) of type (6). Conse-

quently δ(z) behaves like c0 − c1(1− z/ρ′)2
−k̃

+ . . ., where c0 > 0 and c1 > 0 and k̃ is the
largest appearing kj (among those functions fj(z) with ρj = ρ′).

Finally, we have to discuss the numerator. Since the numerator c(z,uj) is just a polynomial in those
uj for which j 6∈ J ′`, we can handle them as in the first case.

Summing up leads to a function fj(z) that is either of type (6) or type (7).

ad 3. In the last case the function f`(z,u`) has an representation of the form (5), where In this case
ρ(u`) depends on all components of u`. As above we will study the behavior of the square-root√
ρ(u`)− z instead of

√
1− z/ρ(u`) since the non-zero factor

√
ρ(u`) can be put to h(z,u`).

Let ρ′ denote the smallest radius of convergence of the functions fj(z) that correspond to u`. Here,
we have to consider the following cases:

(3.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ′′)) ∈ D`:
This means that ρ((fj(z))− z has a simple zero. By the Weierstrass preparation theorem we
can, thus, represent this function as ρ((fj(z))− z = (ρ′′ − z)H(z), where H(z) is non-zero
and analytic at ρ′′. Consequently, we observe that f(z) has a (simple) square-root singularity.

(3.2) We have δ(ρ′) = 0 such that (fj(ρ′)) ∈ D`:
In this case all functions fj(z) with ρj = ρ′ have to be of type (6). Hence the square-root of
δ(z) behaves as √

c(1− z/ρ′)2−k̃ + . . . =
√
c(1− z/ρ′)2

−k̃−1

+ . . . ,

where the corresponding k equals the largest appearing kj plus 1. Thus, f(z) is of type (6).
(3.3) We have δ(ρ′) > 0 such that (fj(ρ′))j∈J′` ∈ D`:

In this case all functions fj(z), with ρj = ρ′ have to be (again) of type (6). Consequently the
square-root of δ(z) behaves like√

c0 − c1(1− z/ρ′)2−k̃ + . . . =
√
c0

(
1− c1

2c0
(1− z/ρ′)2

−k̃

+ . . .

)
,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those functions fj(z) with
ρj = ρ′). Hence, f(z) is of type (6).

This completes the induction proof of Theorem 3.
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5 Conclusion
Now that we have a better picture of the behavior of algebraic coefficients, several extensions are possible
and in the full version of this article [BD13], we say more on

• Algorithmic aspects: In order to automatize the asymptotics, one has to follow the right branch
of the algebraic equations, this is doable by a disjunction of cases following the proof of our main
theorem, coupled with an inspection of the associated spectral radii, this leads to a more ”algebraic”
approach suitable for computer algebra, shortcutting some numerical methods like e.g. the Flajolet–
Salvy ACA (analytic continuation of algebraic) algorithm [FS09]. Giving an algorithm to decide
in a constructive way if a function is N-algebraic would be nice. (This is doable for N-rational
functions). With respect to the Pisot problem (i.e., deciding if one, or an infinite number of fn are
zeroes), finding the best equivalent for N-algebraic functions of the Skolem–Lerch–Mahler theorem
for N-rational functions is also a nice question. The binomial formula of Section 3 leads to many
identities, simplifications of the corresponding nested sums are related to fascinating aspects of
computer algebra.

• Extension to entire functions system: Most parts of the analysis of positive polynomial systems
of equations also works for positive entire systems, however, one quickly gets ”any possible asymp-
totic behavior” as illustrated by the system of equations y1 = z(ey2 +y1), y2 = z(1+2y2y3), y3 =

z(1 + y23), as it has the following explicit solution f1(z) = z
1−z exp

(
z√

1−4z2

)
, which exhibits a

non-algebraic behavior. However, adding the constraints ∂2Pj

∂y2j
6= 0 or if Pj is affine in yj leads

to the same conclusion as Theorem 3, with a smaller set of possible critical exponents (now, all
mj = 1).

• Extension to infinite systems: If one considers systems having an infinite (but countable) number
of unknowns yi(z), it is proved in [Mor10] that strongly connected systems also lead to a square-
root behavior. The fact that the limit law is Gaussian (as soon as a Jacobian operator associated to
the system is compact) is proved in [DGM12]. When the conditions of strong connectivity or of
compactness are dropped, a huge diversity of behavior appears, but it is however possible to give
interesting subclasses having a regular behaviors.

• Extension to attributed grammars: Attribute grammars were introduced by Knuth. Many in-
teresting parameters (like internal paths length in trees or area below lattice paths [BG06, Duc99,
Ric09]) are well captured by such grammars. They lead to statistics with a mean which is no more
linear. For a large class of strongly connected positive systems, it leads to the Airy function, and it
is expected that it is also the case for a class of functional equations with non positive coefficients.

• Extension to limit laws: Philippe Flajolet called Borges’ theorem the principle that motif statistics
follow a Gaussian limit law [FS09]. They are however some technical conditions to ensure such a
Gaussian behavior, like a strong connectivity of the associated system of equations; indeed, in the
non strongly connected case, even very simple motifs in rational languages can then follow any limit
law [BBPT12]. For algebraic systems, the strongly connected case leads to a Gaussian distribution,
as illustrated by the limit law version of the Drmota–Lalley–Woods theorem [Drm97, BKP09]. In
the full version of our article, we give an extension of this result to non strongly connected cases.
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