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Evaluations of Hecke algebra traces at
Kazhdan-Lusztig basis elements

Sam Clearman, Matthew Hyatt, Brittany Shelton, and Mark Skandera

Dept. of Mathematics, Lehigh University, 14 East Packer Ave., Bethlehem, PA 18015

Abstract. For irreducible characters {χλq |λ ` n} and induced sign characters {ελq |λ ` n} of the Hecke algebra
Hn(q), and Kazhdan-Lusztig basis elements C′

w(q) with w avoiding the pattern 312, we combinatorially interpret
the polynomials χλq (q

`(w)
2 C′

w(q)) and ελq (q
`(w)

2 C′
w(q)). This gives a new algebraic interpretation of q-chromatic

symmetric functions of Shareshian and Wachs. We conjecture similar interpretations and generating functions corre-
sponding to other Hn(q)-traces.

Résumé. Pour les caractères irreductibles {χλq |λ ` n} et les caractères induits du signe {ελq |λ ` n} du algèbre de
Hecke, et les élémentsC′

w(q) du base Kazhdan-Lusztig avecw qui évite le motif 312, nous interprétons les polinômes
χλq (q

`(w)
2 C′

w(q)) et ελq (q
`(w)

2 C′
w(q)) de manière combinatorielle. Cette donne une nouvelle interprétation aux fonc-

tionnes symétriques q-chromatiques de Shareshian et Wachs. Nous conjecturons des interprétations semblables et des
foncionnes generatrices qui correspondent aux autres applications centrales de Hn(q).
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1 Introduction
The symmetric group algebra CSn and the (Iwahori-) Hecke algebra Hn(q) have similar presentations
as algebras over C and C[q

1
2 , q¯

1
2 ] respectively, with multiplicative identity elements e and Te, generators

s1, . . . , sn−1 and Ts1 , . . . , Tsn−1
, and relations

s2
i = e T 2

si = (q − 1)Tsi + qTe for i = 1, . . . , n− 1,

sisjsi = sjsisj TsiTsjTsi = TsjTsiTsj for |i− j| = 1,

sisj = sjsi TsiTsj = TsjTsi for |i− j| ≥ 2.

Analogous to the natural basis {w |w ∈ Sn} of CSn is the natural basis {Tw |w ∈ Sn} of Hn(q),
where we define Tw = Tsi1 · · ·Tsi` whenever si1 · · · si` is a reduced expression for w in Sn. We call
` the length of w and write ` = `(w). (See [Hum90].) The specialization of Hn(q) at q

1
2 = 1 is

isomorphic to CSn. In addition to the natural bases of CSn and Hn(q), we have the (signless) Kazhdan-
Lusztig bases [KL79] {C ′w(1) |w ∈ Sn}, {C ′w(q) |w ∈ Sn}, defined in terms of certain Kazhdan-Lusztig
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polynomials {Pu,v(q) |u, v ∈ Sn} in N[q] by

C ′w(1) =
∑
v≤w

Pv,w(1)v, C ′w(q) = q−1
e,w

∑
v≤w

Pv,w(q)Tv, (1)

where ≤ denotes the Bruhat order and we define qv,w = q
`(w)−`(v)

2 . (See, e.g., [BB96].)
Representations of CSn and Hn(q) are often studied in terms of characters. The C-span of the Sn-

characters is called the space of Sn-class functions, and has dimension is equal to the number of integer
partitions of n. (See [Sag01].) Three well-studied bases are the irreducible characters {χλ |λ ` n},
induced sign characters {ελ |λ ` n}, and induced trivial characters {ηλ |λ ` n}, where λ ` n denotes that
λ is a partition of n. The C[q

1
2 , q¯

1
2 ]-span of theHn(q)-characters, called the space ofHn(q)-traces, has the

same dimension and analogous character bases {χλq |λ ` n}, {ελq |λ ` n}, {ηλq |λ ` n}, specializing at
q

1
2 = 1 to the Sn-character bases. Each of the two spaces has a fourth basis consisting of monomial class

functions {φλ |λ ` n} or traces {φλq |λ ` n}, and a fifth basis consisting of power sum class functions
{ψλ |λ ` n} or traces {ψλq |λ ` n}. These are defined via the inverse Kostka numbers {K−1

λ,µ |λ, µ ` n}
and the numbers {L−1

λ,µ |λ, µ ` n} of row-constant Young tableaux of shape λ and content µ by

φλ =
def

∑
µ

K−1
λ,µχ

µ, φλq =
def

∑
µ

K−1
λ,µχ

µ
q , ψλ =

def

∑
µ

Lλ,µφ
µ, ψλq =

def

∑
µ

Lλ,µφ
µ
q . (2)

These functions are not characters. (See [BRW96], [Hai93], [Ste92].) In each space, the five bases
are related to one another by the same transition matrices which relate the Schur, elementary, complete
homogeneous, monomial, and power sum bases of the homogeneous degree n symmetric functions. (See,
e.g., [Sta99].)

It is known that irreducible Sn-characters {χλ |λ ` n} satisfy χλ(w) ∈ Z for all w ∈ Sn. Thus
for any integer linear combination θ of these and any element z ∈ ZSn, we have θ(z) ∈ Z as well. In
some cases, we may associate sets R, S to the pair (θ, z) to combinatorially interpret the integer θ(z) as
(−1)|S||R|. We summarize known results and open problems in the following table.

θ θ(w) ∈ N?
interpretation of

θ(w) as (−1)|S||R|? θ(C ′w(1)) ∈ N?
interpretation of

θ(C ′w(1)) as |R| for
w avoiding 312?

ηλ yes yes yes yes
ελ no yes yes yes
χλ no open yes yes
ψλ yes yes yes yes
φλ no yes conj. by Stembridge, Haiman open

For known combinatorial interpretations of θ(w), see [BRW96]. The number χλ(w) may be computed
by the well-known algorithm of Murnaghan and Nakayama. (See, e.g., [Sta99].) Otherwise, χλ(w) has
no conjectured expression of the type stated above. Interpretations of θ(C ′w(1)) are not known for general
w ∈ Sn, but nonnegativity follows from work of Haiman [Hai93] and Stembridge [Ste91]. Interpreta-
tions of ηλ(C ′w(1)), ελ(C ′w(1)), χλ(C ′w(1)) for w avoiding the pattern 312 follow via straightforward
arguments from results of various authors, notably Gasharov [Gas96], Karlin-MacGregor [KM59], Lind-
ström [Lin73], Littlewood [Lit40], Merris-Watkins [MW85], Stanley-Stembridge [SS93], [Ste91]. These
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will be discussed in Section 3. There is no conjectured combinatorial interpretation of φλ(C ′w(1)), even
for w avoiding the pattern 312 although interpretations have been given for particular partitions λ by
Stembridge [Ste92] and several of the authors [CSS11].

It is known that irreducible Hn(q)-characters {χλq |λ ` n} satisfy χλq (Tw) ∈ Z[q] for all w ∈ Sn.
Thus for any integer linear combination θq of these and any element z ∈ spanZ[q]{Tw |w ∈ Sn}, we
have θq(z) ∈ Z[q] as well. In some cases, we may associate sequences (Sk)k≥0, (Rk)≥0 of sets to the
pair (θq, z) to combinatorially interpret θq(z) as

∑
k(−1)|Sk||Rk|qk. We summarize known results and

open problems in the following table.

θq θq(Tw) ∈ N[q]?
interpretation of
θq(Tw) as∑

k(−1)|Sk||Rk|qk?
θ(qe,wC

′
w(q)) ∈ N[q]?

interpretation of
θq(qe,wC

′
w(q)) as∑

k |Rk|qk for
w avoiding 312?

ηλq no open yes conj. in Section 4
ελq no open yes stated in Section 4
χλq no open yes stated in Section 4
ψλq no open conj. by Haiman conj. in Section 4
φλq no open conj. by Haiman open

The polynomial χλq (Tw), and therefore all polynomials θq(Tw), may be computed via a q-extension of
the Murnaghan-Nakayama algorithm. (See, e.g., [KV84], [KW92], [Ram91].) Otherwise, θλq (w) has no
conjectured expression of the type stated above. Interpretations of θq(qe,wC ′w(q)) are not known for gen-
eralw ∈ Sn, but results concerning containment in N[q] follow principally from work of Haiman [Hai93].
For w avoiding the pattern 312, a formula for ελq (qe,wC

′
w(q)) is given by the authors in Section 4. Work

of Gasharov [Gas96] and Shareshian-Wachs [SW12] then implies a formula for χλq (qe,wC
′
w(q)). Conjec-

tures for ψλq (qe,wC
′
w(q)) are due to the authors and Shareshian-Wachs. These results and conjectures will

also be discussed in Section 4. There is no conjectured combinatorial interpretation of φλq (qe,wC
′
w(q)),

even for w avoiding the pattern 312.
Another way to understand the evaluations θ(w) is to define a generating function Immθ(x) in the

polynomial ring C[x1,1, . . . , xn,n] for {θ(w) |w ∈ Sn}. Similarly, we may define a generating func-
tion Immθq (x) in a certain noncommutative ring A(n; q) for {θ(Tw) |w ∈ Sn}. In some cases these
generating functions have simple forms. We summarize known results in the following tables.

θ nice expression for Immθ(x)?

ηλ yes

ελ yes

χλ open

ψλ yes

φλ open

θq nice expression for Immθq (x)?

ηλq yes

ελq yes

χλq open

ψλq conj. in Section 2

φλq open

Nice expressions for Immηλ(x) and Immελ(x) are due to Littlewood [Lit40] and Merris-Watkins [MW85],
and a nice expression for Immψλ(x) follows immediately from the usual definition of ψ. An expression
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for Immχλ(x) as a coefficient of a generating function in two sets of variables was given by Goulden-
Jackson [GJ92]. There is no conjectured nice formula for Immφλ(x), although a nice formula for par-
ticular partitions λ was stated by Stembridge [Ste92]. These results will be discussed in Section 2. Nice
expressions for Immηλq

(x) and Immελq
(x) are due to the fourth author and Konvalinka [KS11], as is an

expression for Immχλq
(x) as a coefficient in a generating function in two sets of variables. A nice ex-

pression for Immψλq
(x) is conjectured by the authors. These results and conjecture will be discussed in

Section 2.
In Section 2 we discuss known descriptions of the class functions in terms of generating functions in

the ring C[x1,1, . . . , xn,n] and in a certain quantum analog A(n; q) of C[x1,1, . . . , xn,n] known as the
quantum matrix bialgebra. We also give a combinatorial interpretation of the entries of the transition
matrices relating certain bases of A(n; q). In Section 3 we give combinatorial interpretations, using
results in the previous section. In Section 4 we give new descriptions of the class functions in terms of
generating functions in the rings C⊗Λ and C[q

1
2 , q¯

1
2 ]⊗Λ of symmetric functions having coefficients in C

and C[q
1
2 , q¯

1
2 ]. Finally, in Section 5 we draw connections to posets and to the chromatic quasisymmetric

functions of Shareshian and Wachs.

2 Generating functions for θ(w) and θq(Tw) when θ is fixed
For a fixed Sn-class function θ, we create a generating function for {θ(w) |w ∈ Sn} by writing x =
(xi,j), C[x] =

def
C[x1,1, . . . , xn,n], and defining

Immθ(x) =
def

∑
w∈Sn

θ(w)x1,w1
· · ·xn,wn ∈ C[x].

We call this polynomial the θ-immanant. The sign character (w 7→ (−1)`(w)) immanant and trivial
character (w 7→ 1) immanant are the determinant and permanent. Nice formulas for the ελ-immanants
and ηλ-immanants employ determinants and permanents of submatrices of x,

xI,J =
def

(xi,j)i∈I,j∈J , I, J ⊂ [n] =
def
{1, . . . , n}.

In particular, for λ = (λ1, . . . , λr) ` n we have Littlewood-Merris-Watkins identities [Lit40], [MW85]

Immελ(x) =
∑

(I1,...,Ir)

det(xI1,I1) · · · det(xIr,Ir ), Immηλ(x) =
∑

(I1,...,Ir)

per(xI1,I1) · · · per(xIr,Ir ), (3)

where the sums are over all sequences of pairwise disjoint subsets of [n] satisfying |Ij | = λj . A formula
for the ψλ-immanant relies upon a sum over all permutations of cycle type λ,

Immψλ(x) = zλ
∑
w

cyc(w)=λ

x1,w1
· · ·xn,wn ,

where zλ is the product 1α12α2 · · ·nαnα1! · · ·αn!, and λ has αi parts equal to i for i = 1, . . . , n. No
such nice formulas are known for the χλ-immanants or φλ-immanants in general, although we do have a
formula [Ste92, Thm. 2.8] for Immφλ(x) when λ1 = · · · = λr = k,

Immφkr (x) =
∑

(I1,...,Ik)

det(xI1,I2) det(xI2,I3) · · · det(xIk,I1),
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where the sum is over all sequences of pairwise disjoint subsets of [n] = [kr] satisfying |Ij | = r.
For a fixed Hn(q)-trace θq , we create a generating function for {θq(Tw) |w ∈ Sn} as before, but

interpreting polynomials in x = (xi,j) as elements of the quantum matrix bialgebra A(n; q), the non-
commutative C[q

1
2 , q¯

1
2 ]-algebra generated by n2 variables x = (x1,1, . . . , xn,n), subject to the relations

xi,`xi,k = q
1
2xi,kxi,`, xj,kxi,` = xi,`xj,k

xj,kxi,k = q
1
2xi,kxj,k xj,`xi,k = xi,kxj,` + (q

1
2 − q¯1

2 )xi,`xj,k,
(4)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. As a C[q
1
2 , q¯

1
2 ]-module, A(n; q) has a basis of

monomials x`1,m1
· · ·x`r,mr in which index pairs appear in lexicographic order. The relations (4) allow

one to express other monomials in terms of this natural basis.
As a generating function for {θq(Tw) |w ∈ Sn}, we define

Immθq (x) =
def

∑
w∈Sn

θq(Tw)q−1
e,wx1,w1

· · ·xn,wn

in A(n; q), and call this the θq-immanant. The Hn(q) sign character (Tw 7→ (−1)`(w)) immanant and
trivial character (Tw 7→ q`(w)) immanant are called the quantum determinant and quantum permanent,

detq(x) =
∑
w∈Sn

(−q¯1
2 )`(w)x1,w1 · · ·xn,wn , perq(x) =

∑
w∈Sn

(q
1
2 )`(w)x1,w1 · · ·xn,wn .

Specializing A(n; q), detq(x), and perq(x) at q
1
2 = 1, we obtain the commutative polynomial ring C[x]

and the classical determinant det(x) and permanent per(x).
Nice formulas for the ελq -immanants and ηλq -immanants employ quantum determinants and quantum

permanents of submatrices of x. In particular, the fourth author and Konvalinka [KS11, Thm. 5.4] proved
quantum analogs of the Littlewood-Merris-Watkins identities in (3),

Immελq
(x) =

∑
(I1,...,Ir)

detq(xI1,I1) · · · detq(xIr,Ir ), Immηλq
(x) =

∑
(I1,...,Ir)

perq(xI1,I1) · · · perq(xIr,Ir ), (5)

where the sums are as in (3).
To state a nice form for the ψλq -immanant, we introduce the following definitions. Given a sequence

c = (i1, . . . , ik) of distinct elements of [n] with i1 = min{i1, . . . , ik}, define the element d(i1,...,ik)(x) of
A(n; q) to be the sum of all cyclic rearrangements of the monomial xi1,i2xi2,i3 · · ·xik,i1 , each weighted
by qj−(k+1)/2, where xi1,i2 appears in position j,

dc(x) = q¯
(k−1)

2 xi1,i2xi2,i3 · · ·xik,i1 + q¯
(k−3)

2 xik,i1xi1,i2 · · ·xik−1,ik + · · ·+ q
(k−1)

2 xi2,i3 · · ·xik,i1xi1,i2 .

For w ∈ Sn having cycle type λ = (λ1, . . . , λr), define the polynomial gw(x) to be the sum, over all
cycle decompositions (c1, . . . , cr) ofw with |cj | = λj , of dc1(x) · · · dcr (x). For example, the permutation
w = (1, 4, 3)(2, 7)(5, 6) = (1, 4, 3)(5, 6)(2, 7) with its (exactly) two admissible cycle decompositions
leads to the element gw(x) =

(q−1x1,4x4,3x3,1 + x3,1x1,4x4,3 + qx4,3x3,1x1,4)(q¯
1
2x2,7x7,2 + q

1
2x7,2x2,7)(q¯

1
2x5,6x6,5 + q

1
2x6,5x5,6)+

(q−1x1,4x4,3x3,1 + x3,1x1,4x4,3 + qx4,3x3,1x1,4)(q¯
1
2x5,6x6,5 + q

1
2x6,5x5,6)(q¯

1
2x2,7x7,2 + q

1
2x7,2x2,7).
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Conjecture 2.1 Fix λ = (λ1, . . . , λr) ` n. Then in A(n; q) we have Immψλq
(x) =

∑
w

cyc(w)=λ

gw(x).

For example, when n = 5 and λ = (3, 2), we represent each permutation having cycle type (3, 2) as a
product of a 3-cycle with least letter written first and a 2-cycle with least letter written first, (1, 2, 3)(4, 5),
(1, 4, 2)(3, 5), . . . , (3, 5, 4)(1, 2), and we have

Immψ32
q

(x) = (q−1x1,2x2,3x3,1 + x3,1x1,2x2,3 + qx2,3x3,1x1,2)(q¯
1
2x4,5x5,4 + q

1
2x5,4x4,5)

+ (q−1x1,4x4,2x2,1 + x2,1x1,4x4,2 + qx4,2x2,1x1,4)(q¯
1
2x3,5x5,3 + q

1
2x5,3x3,5)

+ · · ·+ (q−1x3,5x5,4x4,3 + x4,3x3,5x5,4 + qx5,4x4,3x3,5)(q¯
1
2x1,2x2,1 + q

1
2x2,1x1,2).

No such nice formulas are known for the χλq - or φλq - immanants.
To obtain values of ελq (Tw) and ηλq (Tw) from (5), one must use the relations (4) to expand in the

natural basis of (the zero-weight space span{x1,w1
· · ·xn,wn |w ∈ Sn} of) A(n; q). For this purpose,

it is helpful to combinatorially interpret the coefficients arising as entries in the transition matrix relating
the bases Bu = {xu1,v1 · · ·xun,vn | v ∈ Sn} and the natural basis {x1,w1 · · ·xn,wn |w ∈ Sn}. These
were obtained by Lambright and the fourth author in [LS10]. To combinatorially interpret the evaluations
{ελq (qe,wC

′
w(q)) |λ ` n} when w avoids the pattern 312, we prove a stronger result.

Theorem 2.2 Fix u,w ∈ Sn with u ≤ w, and let si1 · · · si` be the right-to-left lexicographically greatest
reduced expression for u. Choose an index k ≤ `+ 1 and define u′ = sik−1

· · · si1u, w′ = sik−1
· · · si1w.

Then we have
xu1,w1

· · ·xun,wn =
∑
v∈Sn

tu,w′,v(q
1
2 − q¯1

2 )xu′1,v1 · · ·xu′n,vn ,

where {tu,w′,v(q) | v ∈ Sn} are polynomials in N[q]. Moreover, the coefficient of qb in tu,w′,v(q) is equal
to the number of sequences (π(0), . . . , π(k−1)) of permutations satisfying

1. π0 = w, π(k−1) = v,

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k − 1,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly b values of j.

Proof: Omitted. 2

We may think of each sequence (π(0), . . . , π(k−1)) in the above proof as a (k − 1)-step walk from w to
v in the weak order on Sn. After visiting π(j) ∈ Sn, we may either revisit this permutation or move to
sijπ

(j), with the latter option being mandatory if sij is a left ascent for π(j).

3 Descending star networks and interpretations of class functions
Call a directed planar graph G a planar network of order n if it is acyclic and may be embedded in a
disc so that 2n boundary vertices labeled clockwise as source 1, . . . , source n (with indegrees of 0) and
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sink n, . . . , sink 1 (with outdegrees of 0). In figures, we will draw sources on the left and sinks on the
right, implicitly labeled 1, . . . , n from bottom to top. Given a planar network G, define the path matrix
B = B(G) = (bi,j) of G by

bi,j = number of paths in G from source i to sink j. (6)

It is known that the path matrix of any planar network is totally nonnegative (TNN), i.e., that every minor
of this matrix is nonnegative. This fact is known as Lindström’s Lemma.

Call a sequence π = (π1, . . . , πn) of source-to-sink paths in a planar network a bijective path family
if for some w ∈ Sn with one-line notation w1 · · ·wn, each component path πi begins at source i and
terminates at sink wi. We will say also that π has type w. Call a planar network a bijective skeleton if it
is a union of n source-to-sink paths. Clearly a bijective path family can cover an entire planar network G
only ifG is a bijective skeleton. For [a, b] a subinterval of [n], letG[a,b] be the bijective skeleton consisting
of a− 1 horizontal edges, a “star” of b− a+ 1 edges from sources a, . . . , b to an intermediate vertex, and
b−a+ 1 more edges from this vertex to sinks a, . . . , b, and n− b more horizontal edges. For n = 4, there
are seven such networks: G[1,4], G[2,4], G[1,3], G[3,4], G[2,3], G[1,2], G[1,1] = · · · = G[4,4], respectively,

.

Define GI ◦ GJ to be the concatenation of planar networks GI and GJ , and consider a sequence
([c1, d1], . . . , [cr, dr]) of subintervals of [n] satisfying c1 > · · · > cr and d1 > · · · > dr, and the
concatenation G[c1,d1] ◦ · · · ◦G[cr,dr] of corresponding star networks. For n = 4, these are

. (7)

For each such planar network G, we define a related planar network F by modifying G as follows. For
i = 1, . . . , r − 1, if the intersection [ci+1, di+1] ∩ [ci, di] has cardinality k > 1, then collapse the k paths
from the central vertex ofG[ci+1,di+1] to the central vertex ofG[ci,di], creating a single path between these
vertices. Call F a descending star network. For n = 4, the decending star networks are

. (8)

Proposition 3.1 There are 1
n+1

(
2n
n

)
descending star networks of order n.

Proof: (Idea.) Let F be the descending star network which corresponds as before (7) to the concatenation
G = G[c1,d1] ◦ · · · ◦G[cr,dr]. Modify G to create the related network

G′=
def
G[c1,d1] ◦G[c1,d1]∩[c2,d2] ◦G[c2,d2] ◦ · · · ◦G[cr−1,dr−1] ◦G[cr−1,dr−1]∩[cr,dr] ◦G[cr,dr]

by insertingG[ci,di]∩[ci+1,di+1] betweenG[ci,di] andG[ci+1,di+1] for i = 1, . . . , r−1. Now visually follow
paths from sources to sinks, passing “straight” through each intersection, to complete a bijection to 312-
avoiding permutations in Sn. For example, when n = 4 and F corresponds to G = G[2,4] ◦ G[1,3], we
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construct G′ = G[2,4] ◦G[2,3] ◦G[1,3] and obtain the 312-avoiding permutation w = w(F ) = 3421:

F = , G = , G′ = 3

4

2

1

4

3

2

1

, w =

(
1234

3421

)
.

�

For each 312-avoiding permutation w ∈ Sn, let Fw denote the descending star network corresponding
to w by the bijection in the proof of Proposition 3.1. Every descending star network Fw is a bijective
skeleton, and for every v ≤ w in the Bruhat order, there is exactly one bijective path family π of type v
which covers Fw.

In a planar network G of order n, the source-to-sink paths have a natural partial order Q = Q(G). If πi
is a path originating at source i, and ρj is a path originating at source j, then we define πi <Q ρj if i < j
and πi and ρj never intersect. Observe that these conditions imply the index of the sink of πi to be less
than the index of the sink of ρj . Let P (G) be the subposet of Q(G) induced by paths whose source and
sink indices are equal. For each descending star network Fw, the poset P (Fw) has exactly n elements:
there is exactly one path from source i to sink i, for i = 1, . . . , n.

To combinatorially interpret evaluations of Sn-class functions and Hn(q)-traces, we will fill (French)
Young diagrams with path families (π1, . . . , πn) covering a descending star network Fw, and will call the
resulting structures F -tableaux. If an Fw-tableau U contains a path family π of type v, then we also say
that U has type v. We say that an Fw-tableau U has shape λ for some partition λ = (λ1, . . . , λr) if it has
λi cells in row i for all i. If U has λi cells in column i for all i, we say that U has shape λ>. In this case
we define λ> to be the partition whose ith part is equal to the number of cells in row i of U . Let L(U)
and R(U) be the Young tableaux of integers obtained from U by replacing paths π1, . . . , πn with their
corresponding source and sink indices, respectively.

We define several properties of an F -tableau in terms of the poset Q and the tableaux L(U) and R(U).

1. Call U column-strict if whenever paths πi1 , . . . , πir appear from bottom to top in a column, then
we have πi1 <Q · · · <Q πir .

2. Call U row-semistrict if whenever paths πi1 , πi2 appear consecutively (from left to right) in a row,
we have πi1 <Q πi2 or πi1 is incomparable to πi2 in Q.

3. Call U cyclically row-semistrict if it is row-semistrict and the condition above applies also to paths
πi1 , πi2 appearing last and first (respectively) in the same row.

4. Call U standard if it is column-strict and row-semistrict.

5. Call U cylindrical if for each row of L(U) containing indices i1, . . . , ik from left to right, the
corresponding row of R(U) contains i2, . . . , ik, i1 from left to right.

6. Call U row-closed if L(U) is row-strict (entries increase to the right) and if each row of R(U) is a
permutation of the corresponding row of L(U).

For some Sn-class functions θ, and all 312-avoiding permutations w, we may combinatorially interpret
θ(C ′w(1)) in terms of a star network Fw as follows.

Proposition 3.2 Let w avoid the pattern 312, and let Fw be the corresponding descending star network.
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1. ηλ(C ′w(1)) equals the number of row-semistrict Fw-tableaux of type e and shape λ. It also equals
the number of row-closed Fw-tableaux of shape λ.

2. ελ(C ′w(1)) equals the number of column-strict Fw-tableaux of type e and shape λ>.

3. χλ(C ′w(1)) equals the number of semistandard Fw-tableaux of type e and shape λ.

4. ψλ(C ′w(1)) equals the number of cyclically row-semistrict Fw-tableaux of type e and shape λ. It
also equals the number of cylindrical Fw-tableaux of shape λ.

5. For λ1 ≤ 2, φλ(C ′w(1)) equals zero if there exists a column-strict Fw-tableaux of type e and shape
µ ≺ λ; otherwise it equals the number of column-strict Fw-tableaux of type e and shape λ.

6. For λ = kr, φλ(C ′w(1)) equals the number of column-strict cylindrical Fw-tableaux of shape rk.

Proof: (Idea.) For w avoiding 312, the path matrix B = (bi,j) of Fw satisfies θ(C ′w(1)) = Immθ(B). 2

Haiman [Hai93] and Stembridge [Ste91] have shown that we have χλ(C ′w(1)) ≥ 0 for all λ ` n and all
w ∈ Sn. However, there is no conjectured combinatorial interpretation for χλ(C ′w(1)) unless w avoids
312. Haiman [Hai93] and Stembridge [Ste92] have also conjectured that we have φλ(C ′w(1)) ≥ 0 for all
λ ` n and all w ∈ Sn. There is no general conjectured combinatorial interpretation for φλ(C ′w(1)), even
in the case that w avoids 312, unless λ has the special form stated in Proposition 3.2.

4 Statistics on F -tableaux and interpretations of Hn(q)-traces
For θ an Sn-class function and w avoiding 312, Proposition 3.2 interprets θ(C ′w(1)) as the cardinality of
a set of certain Fw-tableaux. For each of these sets of Fw-tableaux, we define a statistic mapping tableaux
to nonnegative integers, and show (or conjecture) that θq(qe,wC ′w(q)) is a generating function for tableaux
on which the statistic takes the values k = 0, 1, . . . . In each case, our statistic is based upon the number
of inversions of a permutation in Sn. Specifically, let F be a descending star network, and let U be an
F -tableau containing path family π = (π1, . . . , πn) of type w. (Thus πi begins at source vertex i and
terminates at sink vertex wi for i = 1, . . . , n.) Let (πi, πj) be a pair of intersecting paths in F such that
πi appears in a column of U to the left of the column containing πj . Call (πi, πj) a left inversion in U
if we have i > j and a right inversion in U if we have wi > wj . Let INV(U) denote the number of left
inversions in U , and let RINV(U) denote the number of right inversions in U .

Proofs of the validity of the tableaux interpretations in Proposition 3.2 depend upon a relationship
between immanants and path matrices. To state a q-analog of this relationship, we define a map for each
n× n complex matrix B by

σB : A(n; q)→ C[q
1
2 , q¯

1
2 ]

x1,w1 · · ·xn,wn 7→ qe,wb1,w1 · · · bn,wn .

Proposition 4.1 Let θq be an Hn(q)-trace and let w ∈ Sn avoid the pattern 312. Then the path matrix
B of Fw satisfies θq(qe,wC ′w(q)) = σB(Immθq (x)).

Proof: Omitted. 2
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Theorem 4.2 Let w ∈ Sn avoid the pattern 312. For λ ` n we have

ελq (qe,wC
′
w(q)) =

∑
qINV(U), (9)

where the sum is over all column-strict Fw-tableaux U of type e and shape λ>. We also have

χλq (qe,wC
′
w(q)) =

∑
qINV(U), (10)

where the sum is over all standard Fw-tableaux U of type e and shape λ.

Proof: Omitted. The proof of (10) depends upon a result of Shareshian and Wachs [SW12]. 2

Let U be an F -tableau of shape λ = (λ1, . . . , λr) containing a path family π, and let Ui be the ith
row of U . Let U1 ◦ · · · ◦ Ur and Ur ◦ · · · ◦ U1 be the F -tableaux of shape n consisting of the rows of U
concatenated in increasing and decreasing order, respectively.

Conjecture 4.3 Let w ∈ Sn avoid the pattern 312. For λ ` n we have

ηλq (qe,wC
′
w(q)) =

∑
qRINV(U1◦···◦Ur), (11)

where the sum is over all row-closed Fw-tableaux U of shape λ. We also have

ψλq (qe,wC
′
w(q)) =

∑
qINV(Ur◦···◦U1), (12)

where the sum is over all cylindrical Fw-tableaux U of shape λ.

Haiman [Hai93] has shown that we have χλq (qe,wC
′
w(q)) ∈ N[q] for all λ ` n and all w ∈ Sn. He has

also conjectured that we have φλq (qe,wC
′
w(q)) ∈ N[q] for all λ ` n and all w ∈ Sn. There is no general

conjectured combinatorial interpretation for φλq (qe,wC
′
w(q)), even in the case that w avoids 312.

5 Generating functions for θ(C ′w(1)), θq(qe,wC ′w(q)) when w is fixed
For each w ∈ Sn, we define a symmetric generating function for values of θ(C ′w(1)) by

Xw =
∑
λ`n

ελ(C ′w(1))mλ ∈ Λn =
def

spanZ{mλ |λ ` n}. (13)

Expanding Xw in various bases of the space of homogeneous degree-n symmetric functions, including
the forgotten basis {fλ |λ ` n}, we have

Xw =
∑
λ`n

ηλ(C ′w(1))fλ =
∑
λ`n

χλ
>
(C ′w(1))sλ =

∑
λ`n

(−1)n−`(λ)ψλ(C ′w(1))
pλ
zλ

=
∑
λ`n

φλ(C ′w(1))eλ,

where `(λ) is the number of (nonzero) parts of λ.
The function Xw is related to the chromatic symmetric functions {XP |P a poset } of Stanley and

Stembridge [Sta95], [SS93]: if w avoids the pattern 312, then Xw is equal to the Stanley-Stembridge
chromatic symmetric functionXP (Fw). On the other hand, not all chromatic symmetric functionsXP can



Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements 1099

be expressed as Xw for appropriate w ∈ Sn, nor can all generating functions Xw be expressed as XP for
an appropriate poset P . Stanley and Stembridge [Sta95], [SS93] have conjectured that XP is elementary
nonnegative when P has no induced subposet isomorphic to the disjoint union (3 + 1) of a three element
chain and a single element. Call such a poset (3 + 1)-free. A special case of this conjecture is that
Xw is elementary nonnegative for w avoiding 312. Haiman [Hai93] conjectured that Xw is elementary
nonnegative for all w ∈ Sn.

For each w ∈ Sn, we define a Z[q]-symmetric generating function for values of θq(qe,wC ′w(q)) by

XTw =
∑
λ`n

ελq (qe,wC
′
w(q))mλ ∈ Z[q]⊗ Λn = spanZ[q]{mλ |λ ` n}. (14)

Expanding XTw in various bases of the homogeneous degree-n graded component of Z[q]⊗Λn, we have

XTw =
∑
λ`n

ηλq (qe,wC
′
w(q))fλ =

∑
λ`n

χλ
>

q (qe,wC
′
w(q))sλ =

∑
λ`n

ψλq (qe,wC
′
w(q))

(−1)n−`(λ)

pλ
zλ

=
∑
λ`n

φλq (qe,wC
′
w(q))eλ.

The function XTw specializes at q = 1 to Xw, and is related to the chromatic quasisymmetric functions
{XP,q |P a labeled poset } of Shareshian and Wachs [SW12], which specialize at q = 1 to XP . The
function XP,q is itself symmetric (i.e., it belongs to Z[q]⊗Λn) when P is (3+ 1)-free, (2+ 2)-free, and
labeled strategically. If w avoids the pattern 312, then by Theorem 4.2, XTw is equal to the Shareshian-
Wachs chromatic symmetric function XP (Fw),q , with each element of P (Fw) labeled according to the
source and sink of the path in Fw it represents. Again, not all chromatic symmetric functions XP,q can
be expressed as XTw for appropriate w ∈ Sn, nor can all generating functions XTw be expressed as
XP,q for an appropriate labeled poset P . Shareshian and Wachs [SW12] conjectured that XP,q belongs
to spanN[q]{eλ |λ ` n} when P is (3 + 1)-free, (2 + 2)-free, and labeled appropriately. By Theo-
rem 4.2, this is equivalent to the conjecture that XTw belongs to spanN[q]{eλ |λ ` n} for w avoiding 312.
Haiman [Hai93] conjectured that XTw belongs to spanN[q]{eλ |λ ` n} for all w ∈ Sn.
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