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Combinatorial topology of toric arrangements

Giacomo d’Antonio and Emanuele Delucchi

Fachbereich Mathematik und Informatik, Universität Bremen, Bibliothekstraße 1, 28359 Bremen

Abstract. We prove that the complement of a complexified toric arrangement has the homotopy type of a minimal
CW-complex, and thus its homology is torsion-free.
To this end, we consider the toric Salvetti complex, a combinatorial model for the arrangement’s complement. Using
diagrams of acyclic categories we obtain a stratification of this combinatorial model that explicitly associates genera-
tors in homology to the “local no-broken-circuit sets” defined in terms of the incidence relations of the arrangement.
Then we apply a suitably generalized form of Discrete Morse Theory to describe a sequence of elementary collapses
leading from the full model to a minimal complex.

Résumé. On démontre que l’espace complementaire d’un arrangement torique complexifié a le type d’homotopie d’un
complexe CW minimal, donc que ses groupes d’homologie sont libres. On considère d’abord un modèle combinatoire
du complementaire de l’arrangement: le complexe de Salvetti torique. On obtient une stratification de ce complexe qui
fait correspondre explicitement les génerateurs d’homologie aux “circuits-non-rompus locaux” associés aux relations
d’incidence de l’arrangement. On applique une forme generalisée de la théorie de Morse discrète pour obtenir une
suite de collapsements elementaires qui conduit à un complexe minimale.

Keywords: Combinatorial topology, Toric arrangements, Discrete Morse theory, Torsion-freeness in homology.

1 Introduction
A toric arrangement is a finite collection A = {K1, . . . ,Kn} of level sets of characters of the complex
torus, i.e., for all i there is a character χi ∈ Hom((C∗)d,C∗) and a ‘level’ ai ∈ C∗ so that Ki = χ−1

i (ai).
Toric arrangements play a prominent role in recent work of De Concini, Procesi and Vergne on the link

between partition functions and box splines (see e.g. De Concini and Procesi (2010)). A combinatorial
framework for this context (in the case where ai = 1 for all i) is given by the theory of arithmetic
matroids, studied by D’Adderio and Moci (2011) and Brändén and Moci (2012), leading to nice theoretical
constructions and strong enumerative results.

With the aim of improving these enumerative results towards a more structural description, we look at
the combinatorial topology of the complement M(A ) := (C∗)d \

⋃
A .

We consider the case of complexified toric arrangements, allowing |ai| = 1 for all i. It is known
that the Poincaré polynomial of M(A ) can be recovered from the associated arithmetic matroid. More-
over, De Concini and Procesi (2005) computed the algebra structure of the cohomology with complex
coefficients in the unimodular case. We prove that for any complexified toric arrangement A ,
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• the space M(A ) is minimal, i.e., it has the homotopy type of a CW-complex whose cells in every
dimension k are counted by the k-th Betti number.

• Hence, the space M(A ) is torsion-free, that is, the modules Hk(M(A ),Z), Hk(M(A ),Z) are
torsion-free for every k.

The second item is the analogue for toric arrangements of the celebrated theorem by Brieskorn (1971)
paving the way for a combinatorial study of the “Orlik-Solomon Algebra” associated to hyperplane ar-
rangements. In this respect, our result is a step towards a “toric Orlik-Solomon algebra”.

From a combinatorial point of view, our core data is the face category F(A ), which encodes the
incidence relations of the induced stratification of the ‘real torus’ (S1)d ⊆ (C∗)d. As we explain in
Section 4, from F(A ) one can construct a combinatorial model for the homotopy type of M(A ) which
we call toric Salvetti complex because of its relation to the Salvetti complex of a complexified hyperplane
arrangement (see Moci and Settepanella (2011); d’Antonio and Delucchi (2011)). A presentation of the
fundamental group can also be obtained from F(A ) (d’Antonio and Delucchi (2011)).

We prove minimality by exhibiting a sequence of elementary collapses on the toric Salvetti complex that
leads to a minimal complex. To this end, we need to mildly generalize some elements of Discrete Morse
Theory in order to be able to work with nonregular CW-complexes or, correspondingly, face categories
that are not posets (see Section 5.3). Once this is done, we are left with finding an “acyclic matching” of
the face category of the toric Salvetti complex (the so-called Salvetti category) with the minimum number
of critical cells.

The construction of this matching is the bulk of our work. We use the fact that lower intervals in F(A )
are face posets of real arrangements and call this the “local” structure of F(A ). Correspondingly, the
Salvetti category is covered by face posets of Salvetti complexes of these ‘local’ arrangements.

In Delucchi (2008) it is shown how a particular total ordering of the topes of any oriented matroid
leads to a nice stratification of the associated “classical” Salvetti complex with explicitly described strata
that each admit a perfect acyclic matching. Here we construct a decomposition of the Salvetti category
- indexed by a special total ordering of the “local no-broken-circuits” (see Section 3.1) - which, on each
‘local’ piece, restricts to the above stratification of the “classical” Salvetti complex. We use diagrams
over acyclic categories to prove that every piece of this decomposition is in fact isomorphic to the face
category of the stratification of a (smaller dimensional) real torus by a suitable (real) toric arrangement.
This construction is explained in Section 5.2.

We are then left to prove that, for any complexified toric arrangement A , the face category F(A )
admits a perfect acyclic matching, as is explained in Section 5.4.

The final step is to patch together the acyclic matchings of the different pieces making sure that they
add up to an acyclic matching with the required number of critical cells (Proposition 54).

2 Basics
Definition 1 Let Λ ∼= Zd a finite rank lattice. The corresponding complex torus is TΛ = HomZ(Λ,C∗).
The compact (or real) torus corresponding to Λ is T cΛ = HomZ(Λ, S1), where S1 := {z ∈ C | |z| = 1}.

Remark 2 Consider a finite rank lattice Λ and the corresponding torus TΛ. Every λ ∈ Λ defines a
character of TΛ, i.e. the function χλ : TΛ → C∗, χλ(ϕ) = ϕ(λ). Under pointwise multiplication,
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characters form a lattice which is naturally isomorphic to Λ. Therefore in the following we will identify
the character lattice of TΛ with Λ.

Definition 3 Consider a finite rank lattice Λ, a toric arrangement in TΛ is a finite set of pairs

A = {(χ1, a1), . . . (χn, an)} ⊂ Λ× C∗.

A toric arrangement A is called complexified if A ⊂ Λ×S1. Correspondingly, a real toric arrangement
in T cΛ is a finite set of pairs A c = {(χ1, a1), . . . (χn, an)} ⊂ Λ× S1.

Remark 4 The abstract definition is clearly equivalent to the one given in the introduction via the
canonical isomorphism of Remark 2 and by Ki := χ−1

i (ai). Accordingly, we have M(A ) := TΛ \⋃
{K1, . . . ,Kn} and, for a real toric arrangement A c, M(A c) := T cΛ \

⋃
{K1, . . . ,Kn}.

Definition 5 Let Λ be a rank d lattice and let A be a toric arrangement on TΛ. The rank of A is
rk (A ) := rk 〈χ | (χ, a) ∈ A 〉. A character χ ∈ Λ is called primitive if, for all ψ ∈ Λ, χ = ψk only if
k ∈ {−1, 1}. The toric arrangement A is called primitive if for each (χ, a) ∈ A , χ is primitive. The
toric arrangement A is called essential if rk (A ) = d.

Remark 6 For every non primitive arrangement there is a primitive arrangement which has the same
complement. Furthermore, if A is a non essential arrangement, then there exist an essential arrangement
A ′ such that

M(A ) ∼= (C∗)d−l ×M(A ′) where l = rk (A ′).

Therefore the topology of M(A ) can be derived from the topology of M(A ′).

Assumption. From now on we assume every toric arrangement to be primitive and essential.

2.1 Layers
Let A = {(χ1, a1), . . . , (χn, an)} be a toric arrangement on TΛ. Following De Concini and Procesi
(2010) we call layer of A any connected component of a nonempty intersection of some of the subtori
Ki (defined in Remark 4). The set of all layers of A ordered by reverse inclusion is the poset of layers of
the toric arrangement, denoted by C(A ).

Definition 7 Let Λ be a finite rank lattice and A be a toric arrangement in TΛ. For every sublattice
Γ ⊆ Λ we define the arrangement AΓ = {(χ, a) ∈ A | χ ∈ Γ} and for every layer X ∈ C(A ) the
sublattice ΓX := {χ ∈ Λ | χ is constant on X} ⊆ Λ. Then, we can define toric arrangements

AX := AΓX
on TΓX

, A X := {Ki ∩X | X 6⊆ Ki} on the torus X.

Remark 8 Notice that for a layer X ∈ C(A ) and a hypersurface K of A , the intersection K ∩ X is
not necessarily connected. In general K ∩X consist of several connected components, each of which is
a level set of a character in the torus X . Thus, A X is a toric arrangement in the sense of Definition 3.

2.2 Face category
To any complexified toric arrangement is associated the stratification of the real torus T cΛ into chambers
and faces induced by the associated ‘real’ arrangement A c, as follows.
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Definition 9 Consider a complexified toric arrangement A = {(χ1, a1), . . . , (χn, an)}, its chambers
are the connected components of M(A c). We denote the set of chambers of A by T (A ).

The faces of A are the connected components of the intersections C ∩ X where C ∈ T (A ), X ∈
C(A ). They are the (closed) cells of a polyhedral complex, which we denote by D(A ).

The incidence structure of a (possibly non regular) polyhedral complexX is encoded in a category with
one object for every cell, and a morphism for every ‘face-relation’ among cells. This is called the face
category of the complex and is denoted by F(X) (see (d’Antonio and Delucchi, 2011, §2.2.2) for some
details on face categories). It is an acyclic category in the sense of Kozlov (2008).

Definition 10 The face category of a complexified toric arrangement A is F(A ) = F(D(A )), i.e., the
face category of the polyhedral complex D(A ).

2.3 Hyperplane arrangements
Throughout this section let V be a finite dimensional vector space over a field K. An affine hyperplane
H in V is a level set of a linear functional on V . A set of hyperplanes is called dependent or independent
according to whether the corresponding set of functionals is linearly dependent in V ∗ or not.

Definition 11 A arrangement of hyperplanes in V is a collection B of affine hyperplanes in V .

A hyperplane arrangement B is called central if every hyperplane H ∈ B is a linear subspace of V ;
finite if B is finite; locally finite if for every p ∈ V the set {H ∈ B | p ∈ H} is finite; real (or complex)
if V is a real (or complex) vector space.

For every central hyperplane arrangement B, the set L(B) of all nonempty intersections of hyper-
planes, ordered by reverse inclusion, is a geometric lattice and defines the matroid associated to B.

Definition 12 An arrangement B in Cd is called complexified if every hyperplane H ∈ B is the com-
plexification of a real hyperplane, i.e., if H = α−1

H (aH) for aH ∈ R and αH ∈ (Rd)∗ ⊂ (Cd)∗. The
real part of a complexified hyperplane arrangement B is BR = {H ∩ Rd | H ∈ B}, an arrangement of
hyperplanes in Rd.

A real hyperplane arrangement B induces a polyhedral decompositionD(B) of the real ambient space.
The face category of this polyhedral complex is denoted F(B) := F(D(B)). The top cells of this
decomposition are called chambers of B, the set of chambers is denoted T (B).

If B is a complexified hyperplane arrangement, we write F(B) := F(BR) and T (B) := T (BR).

2.4 Covering space
The preimage of a toric arrangement A under the covering map p : Cd ∼= HomZ(Λ,C)→ HomZ(Λ,C∗) =
TΛ, ϕ 7→ exp◦ϕ is a locally finite affine hyperplane arrangement on HomZ(Λ;C). Choosing coordinates
we can associate to the character χi an integer vector αi = α(χi) ∈ Zd so that χi(x) = x

αi,1

1 · · ·xαi,d

d

and then let

A � := {Hχ,a′ | (χ, e2πia′) ∈ A } where Hχ,a′ = {x ∈ Cn | 〈α(χ), x〉 = a′}.

Remark 13 If the toric arrangement A is complexified, so is the hyperplane arrangement A �.

The lattice Λ acts on Cn and on Rn as the group of automorphisms of the covering map p. Consider
now the map q : F(A �)→ F(A ) induced by p.
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Proposition 14 ((d’Antonio and Delucchi, 2011, Lemma 4.8)) Let A be a complexified toric arrange-
ment. The map q : F(A �)→ F(A ) induces an isomorphism of acyclic categories F(A ) ∼= F(A �)/Λ.

3 Combinatorics
In this section we define local no-broken-circuit sets and prove some combinatorial results about chambers
of real hyperplane arrangements.

Lemma 15 Let A be a toric arrangement, X ∈ C(A ) a layer. Then the subposet C(A )≤X is the
intersection poset of a central hyperplane arrangement A [X]. If A is complexified, then A [X] is, too.

Proof: This is implicit in much of De Concini and Procesi (2005).The proof follows by lifting the layer
X to A �. A precise definition of A [Y ] can also be found in Section 5.2.1 below. 2

3.1 No-broken-circuit sets, local and global
Recall the terminology of Section 2.3.

Definition 16 Let B be a central arrangement of hyperplanes with an arbitrary (but fixed) total order. A
circuit is a minimal dependent subset C ⊆ A . A broken circuit is a subset of the form C\{minC} ⊆ B
obtained from a circuit removing its least element. A no-broken-circuit set (or, for short, an nbc set) is a
subset N ⊆ B which does not contain any broken circuit. We will write nbc(B) for the set of no-broken-
circuit sets of B and nbck(B) = {N ∈ nbc(B) | |N | = k} for the set of all no-broken-circuit sets of
cardinality k.

Remark 17 For all k = 0, . . . , d, the cardinality |nbck(B)| does not depend on the chosen total order-
ing.

Definition 18 (De Concini and Procesi (2005)) Let A be a toric arrangement of rank d and let us fix a
total ordering on A . A local no-broken-circuit set of A is a pair

(X,N) with X ∈ C(A ), N ∈ nbck(A [X]) where k = d− dimX

We will write N for the set of local non broken circuits, and partition it into subsets

Nj = {(X,N) ∈ N | dimX = d− j}.

Local no-broken-circuit sets can be used to express the Poincaré polynomial of M(A ). The following
result was obtained in De Concini and Procesi (2005) by computing de Rham cohomology, in Looijenga
(1993) via spectral sequence computations.

Theorem 19 (see (De Concini and Procesi, 2005, Theorem 4.2)) Consider a toric arrangement A . The
Poincaré polynomial of M(A ) can be expressed as follows:

PA (t) =

∞∑
j=0

dimHj(M(A );C) tj =

∞∑
j=0

|Nj | (t+ 1)k−j tj .
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3.2 Combinatorics of real hyperplane arrangements
In this section we will discuss some of the combinatorics of affine arrangements of hyperplanes in real
space. Again, we refer the reader to standard references such as Björner et al. (1999); Orlik and Terao
(1992) for the basics.

If B is an arrangement in a real space V , then every hyperplane H is the locus where a linear form
αH ∈ V ∗ takes the value aH . This way we can associate to each H ∈ B, its positive and negative
halfspace: Hε := {x ∈ V | sgn(αH(x)− aH) = ε} for ε ∈ {+, 0,−}.

Definition 20 Consider a complexified locally finite arrangement B with any choice of ‘sides’ for every
H ∈ B. The sign vector of a face F ∈ F(B) is the function γF : B → {−, 0+} defined as: γF (H) := ε
if relintF ⊆ Hε.

Notice that chambers are precisely those faces whose sign vector maps B to {−,+}.

Definition 21 Let C1 and C2 ∈ T (B) be chambers of a real arrangement, and let B ∈ T (B) be a
distinguished chamber. We will write S(C1, C2) := {H ∈ B | γC1

(H) 6= γC2
(H)} for the set of

hyperplanes of B which separate C1 and C2.
For all C1, C2 ∈ T (B) write C1 ≤ C2 if and only if S(C1, B) ⊆ S(C2, B). This turns T (B) into a
poset T (B)B , the poset of regions of the arrangement B with base chamber B.

Remark 22 Let B0 be a real arrangement and B ∈ T (B0). Given a subarrangement B1 ⊆ B0, for
every chamber C ∈ T (B0) there is a unique chamber Ĉ ∈ T (B1) with C ⊆ Ĉ.

Definition 23 Let B0 be a real arrangement and let �0 denote any total ordering of T (B0). Consider a
subarrangement B1 ⊆ B0. The function

µ[B1,B0] : T (B1)→ T (B0), C 7→ min
�0

{K ∈ T (B0) | K ⊆ C}

defines a total ordering �0,1 on T (B1) by C �0,1 D ⇐⇒ µ[B1,B0](C) �0 µ[B1,B0](D) that we
call induced by �0.

Proposition 24 (Proposition 11 of d’Antonio and Delucchi (2012)) Let a base chamber B of B0 be
chosen. If �0 is a linear extension of T (B0)B , then �0,1 is a linear extension of T (B1)B̂ .

4 A combinatorial model for the topology of toric arrangements
In this Section we explain the construction of a combinatorial model for the homotopy type of the com-
plement M(A ) of a given complexified toric arrangement.

4.1 The homotopy type of complexified hyperplane arrangements
If B is a complexified hyperplane arrangement, one can use the combinatorial structure of BR to study
the topology of M(B). In fact, using combinatorial data about BR, Salvetti defined a cell complex
which embeds in the complement M(B) as a deformation retract (see Salvetti (1987)). We explain this
construction.
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Definition 25 Given a face F ∈ F(B) and a chamber C ∈ T (B), define CF ∈ T (B) as the unique
chamber such that

γCF
(H) =

{
γF (H) if γF (H) 6= 0
γC(H) if γF (H) = 0

The reader may think of CF as the one, among the chambers adjacent to F , that “faces” C.

Definition 26 Consider an affine complexified locally finite arrangement B and define the Salvetti poset
as follows:

Sal(B) = {[F,C] | F ∈ F(B), C ∈ T (B)F ≤ C},

with the relation [F1, C1] ≤ [F2, C2] ⇐⇒ F2 ≤ F1 and (C2)F1
= C1.

Let B be an affine complexified locally finite hyperplane arrangement. Its Salvetti complex is the order
complex S(B) = ∆(Sal(B)), i.e., the simplicial complex of all chains.

Theorem 27 (Salvetti (1987)) The complex S(B) is homotopically equivalent to the complementM(B).
More precisely S(B) embeds in M(B) as a deformation retract.

Remark 28 In fact, the poset Sal(B) is the face poset of a regular cell complex (of which S(B) is
the barycentric subdivision) whose maximal cells correspond to the pairs [P,C] with P ∈ minF(B),
C ∈ T (B). It is this complex which is described in Salvetti (1987).

4.2 The toric Salvetti category
In order to define the toric Salvetti category, we need an analogue of Definition 25 for toric arrangements.

Proposition 29 ((d’Antonio and Delucchi, 2011, Proposition 3.12)) Let Λ be a finite rank lattice, Γ a
sublattice of Λ. Let A a complexified toric arrangement on TΛ and recall the arrangement AΓ from
Definition 7. The projection πΓ : TΛ → TΓ induces a morphism of acyclic categories πΓ : F(A ) →
F(AΓ).

Consider now a faceF ∈ F(A ). We associate to it the sublattice ΓF = {χ ∈ Λ | χ is constant on F} ⊆
Λ.

Definition 30 Consider a toric arrangement A on TΛ and a face F ∈ F(A ). The restriction of A to F
is the arrangement AF := AΓF

on TΓF
.

We will write πF = πΓF
: F(A )→ F(AF ).

Definition 31 ((d’Antonio and Delucchi, 2011, Definition 4.1)) Let A be a toric arrangement on the
complex torus TΛ. The Salvetti category of A is the category Sal A defined as follows.

(a) The objects are the morphisms in F(A ) between faces and chambers:

Obj(Sal A ) = {m : F → C | m ∈ Mor(F(A )), C ∈ T (A )}.

(b) The morphisms are the triples (n,m1,m2) : m1 → m2, where m1 : F1 → C1,m2 : F2 → C2 ∈
Obj(Sal A ), n : F2 → F1 ∈ Mor(F(A )) and m1,m2 satisfy the condition πF1

(m1) = πF1
(m2).

(c) Composition of morphisms is defined as (n′,m2,m3) ◦ (n,m1,m2) = (n ◦ n′,m1,m3), whenever n
and n′ are composable.
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Remark 32 The Salvetti category is an acyclic category in the sense of Kozlov (2008).

Definition 33 Let A be a complexified toric arrangement; its Salvetti complex is the nerve S(A ) =
∆(Sal A ).

The following result generalizes (Moci and Settepanella, 2011).

Theorem 34 ((d’Antonio and Delucchi, 2011, Theorem 4.3)) Let A be a complexified toric arrange-
ment. The Salvetti complex S(A ) embeds in the complement M(A ) as a deformation retract.

Remark 35 As for the case of affine arrangements, the Salvetti category is the face category of a polyhe-
dral complex, of which the toric Salvetti complex is a subdivision.

For the local structure of the toric Salvetti complex see Remark 40 below.

5 Minimality and torsion-freeness
5.1 ‘Local’ minimality
In the case of complexified arrangements, explicit constructions of a minimal CW-complex for M(B)
were given in Salvetti and Settepanella (2007) and in Delucchi (2008). We review the material of (Deluc-
chi, 2008, §4) that will be useful for our later purposes.

Lemma 36 ((Delucchi, 2008, Theorem 4.13)) Let B be a central arrangement of real hyperplanes, let
B ∈ T (A ) and let� be any linear extension of the poset T (B)B . The subset of all X ∈ L(B) such that

S(C,C ′) ∩BX 6= ∅ for all C ′ ≺ C

is an order ideal of L(B). In particular, it has a well defined and unique minimal element we will call
XC .

Now recall the (cellular) Salvetti complex of Definition 26 and Remark 28. In particular, its maximal
cells correspond to the pairs [P,C] where P is a point and C is a chamber. When B is a central arrange-
ment, the maximal cells correspond to the chambers in T (B). In this case we can stratify the Salvetti
complex assigning to each chamber C ∈ T (B) the corresponding maximal cell of S(B), together with
its faces.

Definition 37 Let B be a central complexified hyperplane arrangement and write minF(B) = {P}.
Define a stratification of the cellular Salvetti complex S(B) =

⋃
C∈T (B) SC through

SC :=
⋃
{[F,K] ∈ Sal(B) | [F,K] ≤ [P,C]} .

Given an arbitrary linear extension (T (B),�) of T (B)B , for all C ∈ T (B) define

NC := SC\

( ⋃
D≺C

SD

)
, so that Sal(B) =

⊔
C∈T (B)

NC(B).
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Theorem 38 ((Delucchi, 2008, Lemma 4.18)) There is an isomorphism of posets

NC ∼= F(BXC )op

where XC is the intersection defined via Lemma 36 by the same choice of base chamber and of linear
extension of T (B)B used to define the subposets NC , while BXC = {H ∩ XC | H ∈ B} denotes the
arrangement in the subspace XC determined by restriction of B.

5.2 Stratification of the toric Salvetti category
We now work our way toward proving the minimality of complements of toric arrangements. We start by
defining a stratification of the toric Salvetti complex, in which each stratum corresponds to a local non
broken circuit.

5.2.1 Local geometry of complexified toric arrangements
Consider a rank d complexified toric arrangement A = {(χ1, a1), . . . , (χn, an)}. Choose coordinates
and, as usual, write χi(x) = xαi for αi ∈ Zd and Ki = {x ∈ TΛ | χi(x) = ai}.

We introduce some central hyperplane arrangements we will work with. Consider the arrangement

A0 = {Hi = ker 〈αi, ·〉 | i = 1, . . . , n}

in Rd and, from now on, fix a chamber B ∈ T (A0) and a linear extension ≺0 of T (A0)B .

Definition 39 For every face F ∈ F(A ) and every layer Y ∈ C(A ) define the arrangements

A [F ] = {Hi ∈ A0 | χi(F ) = ai}, A [Y ] = {Hi ∈ A0 | Y ⊆ Ki},

and let BF ∈ T (A [F ]), resp. BY ∈ T (A [Y ]), be such that that B ⊆ BF , resp. B ⊆ BY .

Remark 40 The Salvetti category is the colimit of a diagram over the index category F(A ), which
associates to every F ∈ F(A ) the poset Sal(A [F ]) (d’Antonio and Delucchi, 2012, Lemma 77).

Remark 41 The linear extension ≺0 of T (A0)B induces, as in Proposition 24, linear extensions ≺F of
T (A [F ])BF

and ≺Y of T (A [Y ])BY
, for every F ∈ F(A ) and every Y ∈ C(A ).

Definition 42 Given X ∈ C(A ) let X̃ ∈ L(A0) be defined as

X̃ :=
⋂

X⊆Ki

Hi.

Definition 43 Let Y ∈ C(A ) be a layer of A . For C ∈ T (A [Y ]) let X(Y,C) ⊇ Y be the layer
determined by the intersection defined by Lemma 36 from ≺Y . Analogously, for C ∈ T (A [F ]) let
X(F,C) be defined with respect to ≺F .

Let then
Y := {(Y,C) | Y ∈ C(A ), C ∈ T (A [Y ]), X(Y,C) = Y }.

Moreover, for i = 0, . . . , d let Yi := {(Y,C) ∈ Y | dim(Y ) = i}.

Lemma 44 Let A be a rank d toric arrangement. For all i = 0, . . . d, we have |Yi| = |Ni|.
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As a last preparation, we need to be able to map morphisms m : F → G of F(A ) to the corresponding
face of the arrangement A [F ].

Definition 45 Consider a toric arrangement A on TΛ
∼= (C∗)k and a morphism m : F → G of F(A ).

We associate to m a face Fm ∈ F(A [F ]) as follows.
First, fix an F � ∈ F(A �) such that q(F �) = F . From Proposition 29 and from the freeness of the

action of Λ it follows that there is a unique G� ∈ F(A �) such that q(F � ≤ G�) = m. Then, consider the
arrangement A �

F � = {H ∈ A � | F � ∈ H}. Clearly, up to translation, A �
F � = A [F ] and we can identify

the two arrangements. Now define Fm as the face of A [F ] which contains G�. That is, in terms of sign
vectors and identifying each H ∈ A [F ] with its unique translate which contains G�: γFm = γG� |A [F ].
In particular, when G is a chamber, then Fm also is.

5.2.2 Definition of the strata
Definition 46 Recall Definition 23. The assignment (Y,C) 7→ µ[A [Y ],A0](C) defines a function ξ0 :
Y → T (A0)B . Choose, and fix, a total order a on Y that makes this function order preserving.

Definition 47 Define the map θ : Sal(A )→ Y ; (m : F → C) 7→ (X(F, Fm), σA [X(F,Fm)](Fm)).

Through θ we can now define a filtration of Sal(A ).

Definition 48 Given a complexified toric arrangement A on (C∗)d, we consider the following strati-
fication of Sal(A ) indexed by Y : we write Sal(A ) = ∪(Y,C)∈Y S(Y,C) where S(Y,C) is the induced
subcategory with Ob(S(Y,C)) = {m ∈ Ob(Sal(A )) | ∃(m → n) ∈ Mor(Sal(A )), n ∈ θ−1(Y,C)}.
Moreover, recall the total ordering ` on Y and define

Ny := Sy\
⋃
y′ay

Sy′ .

We now come to the gist of our construction: everything has been arranged so that every stratum, as a
category, is isomorphic to the face category of a real toric arrangement.

Theorem 49 Consider a complexified toric arrangement A and for (Y,C) ∈ Y let N(Y,C) be as in
Definition 48. Then there is an isomorphism of acyclic categories

N(Y,C)
∼= F(A Y )op.

The details of the proof are very technical and quite lengthy. We believe that it is in the best interest of
the clarity of this extended abstract to refer the interested reader to the full treatment given in d’Antonio
and Delucchi (2012).

5.3 Discrete Morse Theory for acyclic categories
Our proof of minimality will consist in describing a sequence of cellular collapses on the toric Salvetti
complex, which is not necessarily a regular cell complex. We need thus to extend discrete Morse theory
from posets to acyclic categories. The setup used in the textbook of Kozlov (2008) happens to lend itself
very nicely to such a generalization - in fact, once the right definitions are made, even the proofs given
there just need some minor additional observation.

We will omit the technicalities in this extended abstract, and refer to (d’Antonio and Delucchi, 2012,
§3) for a more detailed account. We will only say that the notion of acyclic matching extends easily to
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acyclic categories so that an acyclic matching on the face category of a CW-complexX defines a sequence
of cellular collapses on X that preserve the homotopy type and leads to a complex with as many cells in
each dimension as there are corresponding critical (unmatched) cells in the original matching (d’Antonio
and Delucchi, 2012, Definition 50, Theorem 53). We will call an acyclic matching perfect if its number
of critical cells in dimension k is the k-th Betti number of X .

Moreover, the well-known Patchwork Lemma (Kozlov, 2008, Theorem 11.10) generalizes.

Lemma 50 (“Patchwork Lemma”, Lemma 52 of d’Antonio and Delucchi (2012)) Consider a functor
of acyclic categories ϕ : C → C′ and suppose that for each object c of C′ an acyclic matching Mc of
ϕ−1(c) is given. Then the matching M :=

⋃
c∈Ob C′ Mc of C is acyclic.

5.4 Perfect acyclic matchings for compact tori
Let A be a complexified toric arrangement in TΛ and let (χ1, a1), . . . , (χd, ad) ∈ A be such that
α1, . . . , αd (see Section 2.4) are (Q-) linearly independent. Then P = ∩iKi ∈ max C(A ). Up to a
biholomorphic transformation we may suppose that P is the origin of the torus. For i = 1, . . . , d let H1

i

denote the hyperplane of A � liftingKi at the origin of Hom(Λ,R) ' Rd. We identify for ease of notation
Λ ' Zd ⊆ Rd, and in particular think of αi as the normal vector to H1

i .
For j ∈ [d] we consider the rank j − 1 lattice Λj := Zd ∩

⋂
i≥j H

1
i . It is a standard exercise in algebra

to find a basis u1, . . . , ud of Λ such that for all i = 1, . . . , d, the elements u1, . . . , ui−1 are a basis of Λi.
In particular, ui 6∈ H1

i , hence ui(H1
i ) 6= H1

i . Moreover, without loss of generality we may suppose
ui ∈ (H1

i )+ := {x ∈ Rd | 〈x, αi〉 ≥ 0}.
For i = 1, . . . , d, let (H2

i )+ := ui((H
1
i )+), and define Q :=

⋂d
i=1[(H1

i )+ \ (H2
i )+].

Then, Q is a fundamental region for the action of Λ on Rd (d’Antonio and Delucchi, 2012, Lemma 86).

Definition 51 Let A be a rank d toric arrangement, and let Bd be the ‘boolean poset on d elements’, i.e.,
the acyclic category on the subsets of [d] with the inclusion morphisms. Since Bd is a poset, the function
Ob(F(A )) → Ob(Bd), F 7→ {i ∈ [d] | F ⊆ Ki}, induces a well defined functor of acyclic categories
I : F(A )→ Bopd .

For every I ⊆ [d] define the category FI := I−1(I).

Lemma 52 (Lemma 89 of d’Antonio and Delucchi (2012)) For all I ⊆ [d], the subcategory FI is a
poset admitting an acyclic matching with only one critical element (in top rank).

Proposition 53 For any complexified toric arrangement A , the acyclic category F(A ) admits a perfect
acyclic matching.

Proof: Let A be of rank d. The proof is a straightforward application of the Patchwork Lemma (Lemma
50) in order to merge the 2d acyclic matchings described in Lemma 52 along the map I of Definition 51.
The resulting ‘global’ acyclic matching has 2d critical elements and is thus perfect. 2

5.5 Minimality
Let A be a (complexified) toric arrangement.

Proposition 54 The Salvetti category Sal A admits a perfect acyclic matching.
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Proof: Let P denote the acyclic category given by the |Y |-chain. We define a functor of acyclic categories

ϕ : Sal A → P ; m 7→ (Y,C) for m ∈ N(Y,C)

and with Theorem 49 we have an isomorphism of acyclic categories ϕ−1((Y,C)) = N(Y,C) ' F(AY ).
Then, by Proposition 53, ϕ−1((Y,C)) has an acyclic matching with 2d−rkX critical cells.

An application of the Patchwork Lemma 50 gives then an acyclic matching on Sal(A ) with
∑
j |Yj |2d−j =∑

j |Nj |2d−j = PA (1) critical cells, where the first equality is given by Lemma 44. This matching is
thus perfect. 2

Corollary 55 The complement M(A ) is a minimal space.

Corollary 56 The groups Hk(M(A ),Z), Hk(M(A ),Z) are torsion free for all k.
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