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Position of the maximum in a sequence with
geometric distribution
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As a sequel to [1], the position of the maximum in a geometrically distributed sample is investigated. Samples of
length n are considered, where the maximum is required to be in the firstd positions. The probability that the
maximum occurs in the firstd positions is sought ford dependent onn (as opposed tod fixed in [1]). Two scenarios
are discussed. The first is whend = αn for 0 < α ≤ 1, where Mellin transforms are used to obtain the asymptotic
results. The second is when1 ≤ d = o(n).
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1 Introduction
Consider a word whose letters are natural numbers. Assume that these letters occur independently and
with geometric probability. So forp + q = 1, each letterj appears in the word with probabilitypqj−1.
We writeQ := q−1 andL := logQ.

We address the question: “What is the probability that the maximum in a word occurs in the firstd
positions?” We take words of lengthn and required ≤ n. Previously (in [1]),d was considered fixed.
Now, d is allowed to grow withn. First, we assume thatd is proportional ton and then we consider the
case whend is o(n) (but at least 1). The latter produces the same solutions as whend is fixed (see [1]).

We distinguish between two cases: ‘strict’ and ‘weak’. A ‘strict’ maximum never recurs, whereas a
‘weak’ maximum can recur any number of times. These apply separately to the two parts of the word (the
first d letters, and the remainingn− d letters). This means that in total, there are four different cases to be
dealt with: (strict, strict), (weak, strict), (strict, weak) and (weak, weak), where the first entry refers to the
first d letters in the word, and the second entry to the rest of the word. The results in the (strict, strict) case
for d fixed will hold for the other scenarios too (i.e., it is not required thatd is independent ofn). This is
because the relevant calculations in [1] still go though when we take the limits asn→∞. This is not true
for the remaining three cases which are dealt with in Section 3.

2 Results
Theorem 1 The probability that the maximum value in a word of lengthn is in the firstd positions (for
d = αn) is

Max(w,s)(n) ∼ 1
L

log
(

1
1− α(1−Q−1)

)
+

1
L

(
ψ0(n(1− αp))− ψ0(n)

)
,

Max(s,w)(n) ∼ α(Q− 1)
L(1 + α(Q− 1))

(
1 + ψ(n(q + pα))

)
,

Max(w,w)(n) ∼ log(1 + α(Q− 1))
L

+
1
L

(
ψ0(n)− ψ0

(
n
(q + αp

q

)))
,

asn→∞ whereQ := q−1, L := logQ, and the fluctuations are defined by

ψ(x) :=
∑
k 6=0

Γ(1− χk)e2kπiiix, for k ∈ Z,
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and
ψ0(x) :=

∑
k 6=0

Γ(−χk)e2kπiii logQ x, for k ∈ Z.

Note that we writeiii rather than thei we use as an index.

Theorem 2 The probability that the maximum value in a word of lengthn is in the firstd positions, for
1 ≤ d = o(n), is

Max(w,s)(n) ∼ (1−Q−1)d
Ln

(
1 + ψ(n)

)
,

Max(s,w)(n) ∼ (Q− 1)d
Ln

(1 + ψ(n)),

Max(w,w)(n) ∼ (Q− 1)d
Ln

(1 + ψ(n)),

asn→∞, whereψ(x) =
∑
k 6=0

Γ(1− χk)e2kπiii logQ x, k ∈ Z.

3 Suppose d = αn
Suppose we now considerd = αn where0 < α ≤ 1. The ‘d fixed’ results from [1] continue to hold only
in the (strict, strict) case. For the other three cases we make use of a technique from complex analysis
called the ‘Mellin’ transform. The rules used below can be found in [2] and [5], among others. The first
case is done in greater detail than the other two, as a similar process is used in each case.

3.1 Case (weak, strict), for d = αn

For this scenario (finding the probability with which the maximum,k, occurs in the firstd letters of a
word) we require that there is at least onek in the firstd places, and possibly more. However, the rest of
the word may only have letters from the set{1, · · · , k − 1}. Now suppose thatd = αn, for 0 < α ≤ 1.
The generating function is explained in [1], yielding the following coefficients (withd replaced byαn).

f(w,s)(n) :=
∑
k≥1

αn−1∑
i=0

(1− qk−1)i+n−αnpqk−1(1− qk)αn−1−i. (1)

Now note that
αn−1∑
i=0

(
1− qk−1

1− qk

)i

=
(1− qk)αn − (1− qk−1)αn

(1− qk)αn−1qk−1(1− q)
, (2)

and thus, sincep = 1− q and(1− a)n ∼ e−an for smalla,

f(w,s)(n) =
∑
k≥1

(1− qk−1)n(1−α)
[
(1− qk)αn − (1− qk−1)αn

]
∼

∑
k≥1

[
e−nqk−1(1−αp) − e−nqk−1

]
.

We are now in a position to use Mellin transforms to find an approximation. We shift the fundamental
strip from〈0,∞〉 to 〈−1, 0〉 and define a new function:

fws(x) :=
∑
k≥1

[(
e−nqk−1(1−αp) − 1

)
−

(
e−nqk−1

− 1
)]
. (3)

Then the Mellin transform of this function is:

f∗ws(s) =
∑
k≥1

[(
qk−1(1− αp)

)−sΓ(s)− (qk−1)−sΓ(s)
]

=
∑
k≥1

qs(1−k)Γ(s)
[
(1− αp)−s − 1

]
= qsΓ(s)

[
(1− αp)−s − 1

] ∑
k≥1

(q−s)k

= Γ(s)
[
(1− αp)−s − 1

] 1
1− q−s

, for <(s) < 0, (4)
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where<(s) represents the real part of the complex numbers. The reason for shifting the fundamental strip
is that the transform exists in the intersection of the domain of convergence of the generalised Dirichlet
series and the fundamental strip off∗(s). The intersection〈−∞, 0〉 ∩ 〈0,∞〉 is empty, but with the shift
we have a final fundamental strip of〈−1, 0〉. We choose a value inside this, say− 1

2 , with which to perform
our inverse Mellin transform:

fws(x) =
1

2πiii

∫
(− 1

2 )

Γ(s)
[
(1− αp)−s − 1

] 1
1− q−s

x−sds. (5)

The notation(− 1
2 ) under the integral sign means an integral from− 1

2 − iii∞ to − 1
2 + iii∞. This can

be approximated by moving the contour to the right (and thus collecting negative residues) since we are
interested inx large. The first poles we encounter are the simple pole ats = 0 (which would be a double
pole except that one cancels with the factor(1 − αp)−s − 1) and the simple poles ats = χk := 2kπiii

L ,
k ∈ Z \ {0} whereL := logQ. The former contributes the main term and the rest contribute the
fluctuations which are comparatively extremely small. Ass→ 0,

Γ(s) ∼ 1
s
,

(1− αp)−s − 1 ∼ 1− s log(1− αp)− 1 = −s log(1− αp),

1
1− q−s

=
1

1− e−s log q
∼ 1

1− (1− s log q)
=

1
s log q

,

and
x−s = e−s log x ∼ 1.

Thus the negative residue is

−[s−1]
1
s

(
− s log(1− αp)

) 1
s log q

=
log(1− αp)

log q
.

We also have simple poles ats = χk, for k 6= 0. Let ε := s− χk then expanding aroundε = 0 gives

1
1− q−s

=
1

1− q−χk−ε
=

1
1− q−ε

=
1

1− e−ε log q
∼ 1

1− (1− ε log q)
=

1
ε log q

.

So the negative residues for all non-zerok are∑
k 6=0

(−1)[ε−1]Γ(χk)
[
(1− αp)−χk − 1

] 1
ε log q

x−χk =
1
L

∑
k 6=0

Γ(χk)
[
(1− αp)−χk − 1

]
x−χk

=
1
L

∑
k 6=0

Γ(χk)
[
e−χk log(1−αp) − 1

]
e−χk log x

=
1
L

∑
k 6=0

Γ(χk)
[
e−χk log(x(1−αp)) − e−χk log x

]
=

1
L

∑
k 6=0

Γ(−χk)
[
e2kπiii logQ(x(1−αp)) − e2kπiii logQ x

]
.

Now put these together to get the probability of having a weak maximum in the firstd positions which
does not repeat in the rest of the word and whered = αn grows withn asn→∞:

log(1− αp)
log q

+
1
L

∑
k 6=0

Γ(−χk)
[
e2kπiii logQ(n(1−αp)) − e2kπiii logQ n

]
=

log(1− α(1−Q−1))
−L

+
1
L

(
ψ0(n(1− αp))− ψ0(n)

)
(6)

for Q = q−1, L = logQ andψ0(x) as in Theorem 1. Note that ifα = 1 thend = n and the main term
yields a probability of 1, confirming our result on a word with no restrictions.
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3.2 Case (strict, weak), for d = αn

In this case, we allow the maximum,k, to occur only once in the firstd letters, but any number of times in
the rest of the word. Again, [1] provides us with the generating function whose coefficients are

f(s,w)(n) =
∑
k≥1

αnpqk−1(1− qk−1)αn−1(1− qk)n(1−α)

∼
∑
k≥1

αnpqk−1e−nqk−1(q+pα). (7)

If we define the function
fsw(x) :=

∑
k≥1

αxpqk−1e−xqk−1(q+pα),

then the Mellin transform will be

f∗sw(s) =
∑
k≥1

αpqk−1(qk−1)−(s+1)(q + pα)−(s+1)Γ(s+ 1)

= αp(q + pα)−(s+1)Γ(s+ 1)
1

1− q−s
, for <(s) < 0, (8)

and the fundamental strip is the overlap of the interval(−∞, 0) and the fundamental strip ofxe−x which
is 〈−1,∞〉, i.e., 〈−1, 0〉. Hence we pick our contour integral from− 1

2 − iii∞ to− 1
2 + iii∞, and perform

the inverse Mellin transform to get:

fsw(x) =
1

2πiii

∫
(− 1

2 )

αp(q + pα)−(s+1)Γ(s+ 1)
1

1− q−s
x−sds. (9)

By moving the contour to the right, the first poles we reach are ats = 0 ands = χk, k 6= 0. For the main
term, the negative residue is

−[s−1]αp(q + pα)−1Γ(1)
1

s log q
=

αp

L(q + pα)
.

The fluctuations come from the negative residues of the poles ats = χk, k 6= 0. Let ε := s − χk, then
aroundε = 0 we get 1

1−q−s ∼ 1
ε log q , and so these poles contribute:

−
∑
k 6=0

[ε−1]αp(q + pα)−(χk+1)Γ(χk + 1)
1

ε log q
x−χk =

αp

L(q + pα)

∑
k 6=0

Γ(1− χk)e2kπiii logQ(x(q+pα)).

This gives a total probability in the (strict, weak) case asymptotic to

α(Q− 1)
L(1 + α(Q− 1))

(
1 + ψ(n(q + pα))

)
, (10)

asn→∞ whereψ(x) =
∑
k 6=0

Γ(1− χk)e2kπiii logQ x.

(For α = 1, the dominant term givespL , which is the same as the probability of having one winner
amongn players in a game where each player tosses a coin until a head appears, and the winner is the
player who takes the longest to toss a head, see [3].)

3.3 Case (weak, weak), for d = αn

Here, the maximum can recur anywhere, having first appeared at least once in the firstd letters. From [1],
and by (2), we can approximate as in the (w,s) case to get:

f(w,w)(n) ∼
∑
k≥1

[
(e−nqk

− 1)− (e−nqk−1(q+αp) − 1)
]
. (11)

We define an exact function in terms ofx to be:

fww(x) :=
∑
k≥1

[
(e−xqk

− 1)− (e−xqk−1(q+αp) − 1)
]
.
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The transform of this function is

f∗ww(s) =
∑
k≥1

[
q−skΓ(s)− (qk−1)−s(q + αp)−sΓ(s)

]
= Γ(s)

[
1− qs(q + αp)−s

] 1
qs − 1

, (12)

which exists in the strip〈−1, 0〉. We can thus rewritefww(x) as a contour integral

fww(x) =
1

2πiii

∫
(− 1

2 )

Γ(s)
[
1− qs(q + αp)−s

] 1
qs − 1

x−sds. (13)

The relevant simple poles occur ats = 0 ands = χk, k 6= 0. The negative residue ats = 0 is

−[s−1]
1
s
s log

(q + αp

q

) 1
s log q

=
1
L

log
(q + αp

q

)
, (14)

which, as in the (weak, strict) case, is one forα = 1. For the poles ats = χk, let ε := s − χk. Then
expanding aroundε = 0 gives 1

qs−1 ∼
1

ε log q and so the negative residues are

−
∑
k 6=0

[ε−1]Γ(χk)
[
1−qχk(q+αp)−χk

] 1
ε log q

x−χk =
1
L

∑
k 6=0

Γ(−χk)
[
e2kπiii logQ x−e2kπiii logQ(x( q+αp

q ))
]
.

(15)
By summing (14) and (15) and replacingx byn the asymptotic result for the (weak, weak) case in Theorem
1 is found.

4 Suppose 1 ≤ d = o(n)
Initially, in this sectiond was considered to be dependent onn according to the relationshipd = αnγ ,
where0 < γ < 1, and0 < α ≤ 1. Mellin transforms were used to obtain the same results as found in the
d fixed case (see [1]). However, it was then found (as suggested by a referee) that in fact anyd such that
1 ≤ d = o(n) will produce the same results. The explanation is given below.

We show that the results are the same as whend is fixed by referring back to the step in the calculations
for d fixed (see [1]) where thed = αn calculations failed. The important stage is when the main term of
the probability is given by the expression

d−1∑
i=0

d−1−i∑
l=0

(
d− 1− i

l

)
(−1)lQ

−l(1−Q−1)
L

1
(l + 1 +N)

(
N+l

l

) . (16)

This is the (weak, strict) case, but the others are similar. SinceN grows liken, we usen instead ofN for
simplicity. Ford fixed, it can be seen that thel = 0 term dominates, since each term in the sum onl is
of orderO

(
1

nl+1

)
. Ford proportional ton, each term in the inner sum is of orderO( 1

n ), so none clearly
dominates, and Mellin transforms are required to find the result (see Section 3). But what ifd = αnγ for
0 < γ < 1, or evend = n

log n?
Suppose we letf(n) = o(n) for somef(n) such thatf(n) → ∞ asn → ∞. Then we can write

d = n
f(n)

(
= o(n)

)
. In general, a typical term in the sum onl is of orderO

(
1

nf l(n)

)
. For l = 0, we again

have an order ofO( 1
n ). In fact, this term can be expressed asc

n wherec is a constant. This will dominate
all other terms, since even the infinite sum onl (a geometric series) is:

1
n

∞∑
l=1

(f(n))−l =
1

n(f(n)− 1)
= o

( 1
n

)
. (17)

The results in Theorem 2 follow from the above.

5 Conclusion

Table 1 is a summary of results from this paper. (Thed fixed results are from [1]). This table shows only
the dominant term for the results, expressed in terms ofQ.
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Case (s,s) (w,s) (s,w) (w,w)

1 ≤ d = o(n) (1−Q−1)d
Ln

(1−Q−1)d
Ln

(Q−1)d
Ln

(Q−1)d
Ln

d = αn (1−Q−1)α
L

log(1−α(1−Q−1))
−L

α(Q−1)
L(1+α(Q−1))

log(1+α(Q−1))
L

Tab. 1: Table of results for the two catagories

If we considerα small (i.e., close to zero) in the second category, we should get similar solutions to
catagory one (in whichd is always small relative ton for n large). We thus determine what these dominant
terms look like asymptotically asα → 0. We use the approximationslog(1 + x) ∼ x and 1

1−x ∼ 1 as
x→ 0 ([4]). Supposed = αn, then for the (weak, strict) case, we have

log(1− α(1−Q−1))
logQ−1

∼ −α(1−Q−1)
logQ−1

=
α(1−Q−1)

L
.

For the (strict, weak) case, we find that

α(Q− 1)
L(1 + α(Q− 1))

∼ α(Q− 1)
L

,

and for the (weak, weak) case,

log(1 + α(Q− 1))
L

∼ α(Q− 1)
L

.

By replacing eachα by d
n , it can be seen that each of these corresponds to thed fixed case in Table 1

above.
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