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We study the notion of hypertree-width of hypergraphs. We prove that, up to a constant factor, hypertree-width is
the same as a number of other hypergraph invariants that resemble graph invariants such as bramble-number, branch-
width, linkedness, and the minimum number of cops required to win Seymour and Thomas’s robber and cops game.
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1 Introduction
Tree-width of graphs is a well studied notion, which plays an important role in structural graph theory
and has many algorithmic applications. Various other graph invariants are known to be the same or within
a constant factor of tree-width, for example, the bramble number or tangle number of a graph [4, 5], the
branch-width [5], the linkedness [4], and the number of cops required to win the robber and cops game on
the graph [6]. Several of these notions may be viewed as measures for the global connectivity of a graph.
The various equivalent characterisations of tree-width show that it is a natural and robust notion.

Formally, let us call two graph or hypergraph invariants I and J equivalent if they are within a constant
factor of each other, that is, if there are constants c, d > 0 such that for all graphs or hypergraphs G we
have c · I(G) ≤ J(G) ≤ d · I(G).

Tree decompositions and tree-width can be generalized to hypergraphs in a straightforward manner;
the tree-width of a hypergraph is equal to the tree-width of its primal graph. Motivated by algorithmic
problems from database theory and artificial intelligence, Gottlob, Leone, and Scarcello [2] introduced
the hypertree-width of a hypergraph. Hypertree-width is based on the same tree decompositions as tree-
width, but the width is measured differently. Essentially, the hypertree-width is the minimum number
of hyperedges needed to cover all blocks of a tree decomposition. The blocks (or bags, parts) of a tree
decomposition (T, (Bt)t∈V (T )) of a hypergraph H = (V,E) are the sets Bt ⊆ V for the tree-nodes t,
and a block Bt is covered by the hyperedges e1, . . . , ek ∈ E if Bt ⊆

⋃k
i=1 ei. Hypertree-width is always
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bounded by one plus the tree-width [1].‡ Conversely, the hypergraph consisting of a single hyperedge
with n vertices has tree-width n − 1 and hypertree-width 1, thus tree-width and hypertree-width are not
equivalent. It can also be shown that hypertree-width is not equivalent to the tree-width of the dual graph
or the bipartite incidence graph of a hypergraph.

Unfortunately, we have not yet given the full definition of hypertree-width; the notion we have defined
so far is called generalized hypertree-width. Hypertree-width is defined by adding a technical condition,
the so-called special condition, that restricts the way blocks can be covered by hyperedges. A hypertree
decomposition consists of a tree decomposition together with an appropriate cover of the blocks by edges.
We will give the full technical definition in Section 5. The special condition is needed to prove that for
fixed k, hypergraphs of hypertree-width k can be recognized and hypertree decompositions of width k can
be computed in polynomial time. As an application, Gottlob, Leone, and Scarcello [2] showed that con-
straint satisfaction problems whose instances have an underlying hypergraph of bounded hypertree-width
can be solved in polynomial time. Similarly, conjunctive database queries whose underlying hypergraph
has bounded hypertree-width can be evaluated in polynomial time.

Despite the technical special condition, hypertree-width seems to be a quite natural notion. In [3],
Gottlob, Leone, and Scarcello characterise hypertree-width in terms of a game that is defined like Seymour
and Thomas’s robber and cops game on graphs, except that instead of cops occupying vertices, the robber
now has to escape marshals occupying hyperedges. Unfortunately, this characterisation also has a small
technical defect: The marshals are required to play monotonically, that is, they have to shrink the escape
space of the robber in each move. It can be shown that there are hypergraphs where this reduces the
strength of the marshals, that is, k marshals have a winning strategy, but no monotone winning strategy
[1].

In this paper, we prove that the invariants hypertree-width, generalized hypertree-width, minimum num-
ber of marshals with a monotone winning strategy, and minimum number of marshals with a winning
strategy are all equivalent. More precisely, they are all within a constant factor of (3 + ε) from one an-
other. Furthermore, we introduce invariants for measuring the global connectivity of a hypergraph that
resemble bramble number, tangle number, branch-width, and linkedness of a graph and prove them all
to be equivalent to hypertree-width. Our results show that hypertree-width is a similarly robust hyper-
graph invariant as tree-width is for graphs. Furthermore, they imply that the algorithmic applications of
hypertree-width can be extended to generalized hypertree-width.

Due to space limitations, in this extended abstract we omit tangles and branch-decompositions of hy-
pergraphs and the related notions of width. We also have to omit some of the proofs.

2 Preliminaries
A hypergraph is a pair H = (V (H), E(H)), consisting of a nonempty set V (H) of vertices, and a
set E(H) of subsets of V (H), the hyperedges of H . We only consider finite hypergraphs. Graphs are
hypergraphs in which all hyperedges have two elements.

For a hypergraph H and a set X ⊆ V (H), the subhypergraph induced by X is the hypergraph H[X] =
(X, {e ∩X | e ∈ E(H)}). We let H \X := H[V (H) \X]. The primal graph of a hypergraph H is the
graph

H = (V (H), {{v, w} | v 6= w, there exists an e ∈ E(H) such that {v, w} ⊆ e}).

‡ We do not require isolated vertices to be contained in any block of a tree decomposition, so we can disregard them.
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A hypergraph H is connected if H is connected. A set C ⊆ V (H) is connected (in H) if the induced
subhypergraph H[C] is connected, and a connected component of H is a maximal connected subset of
V (H). A sequence of nodes of V (H) is a path of H if it is a path of H .

A tree decomposition of a hypergraph H is a tuple (T,B), where T is a tree and B = (Bt)t∈V (T ) a
family of subsets of V (H) such that for each e ∈ E(H) there is a node t ∈ V (T ) such that e ⊆ Bt, and
for each v ∈ V (H) the set {t ∈ V (T ) | v ∈ Bt} is connected in T .

We assume the tree T in a tree decomposition to be rooted. For every node t, Tt denotes the rooted
subtree of T with root t.

3 From separators and hyperlinkedness ...
Let H be a hypergraph, M ⊆ E(H) and C ⊆ V (H). C is M -big, if it intersects more than half of the
edges of M , that is, ∣∣{e ∈ M | e ∩ C 6= ∅}

∣∣ >
|M |
2

.

Note that if S ⊆ E(H), then H \
⋃

S has at most one M -big connected component.
Let k ≥ 0 be an integer. A set M ⊆ E(H) is k-hyperlinked, if for any set S ⊆ E(H) with |S| < k,

H \
⋃

S has an M -big component. The largest k for which H contains a k-hyperlinked set is called
hyperlinkedness of H , hlink(H). Hyperlinkedness is an adaptation of the linkedness of a graph [4] to our
setting.

A set S ⊆ E(H) is a balanced separator for a set M ⊆ E(H) if H \
⋃

S has no M -big connected
component. Observe that hlink(H) ≤ k if and only if every M ⊆ E(H) has a balanced separator of size
at most k.

Example 1. Let H :=
(
{1, 2, 3, 4, 5}, {{1, 2}, {1, 3, 5}, {1, 4}, {2, 5}, {4, 5}}

)
.

• Let M1 := E(H). Then S := {{1, 3, 5}} is a balanced separator of size 1 for M1.

• M2 := {{1, 2}{1, 3, 5}, {2, 5}} has no balanced separator of size 1.

• hlink(H) = 2.

4 ... to brambles ...
Next, we adapt the bramble number of a graph [4] to our hypergraph context.

Let H be a hypergraph. Sets X1, X2 ⊆ V (H) touch if X1 ∩ X2 6= ∅ or or there exists an e ∈ E(H)
such that e ∩X1 6= ∅ and e ∩X2 6= ∅. A bramble of H is a set B of pairwise touching connected subsets
of V (H). The hyper-order of a bramble B is the least integer k such that there exists a set R ⊆ E(H)
with |R| = k and

⋃
R ∩X 6= ∅ for all X ∈ B. The hyperbramble number hbramble-no(H) of H is the

maximum of the hyper-orders of all brambles of H .
The following lemma follows from the observation that a separator for a bramble has to intersect all

elements of the bramble.

Lemma 2. hlink(H) ≤ hbramble-no(H) for every hypergraph H .

We cannot obtain equality here, as the following example shows:
Example 3. hlink(K5) ≤ 2 < 3 ≤ hbramble-no(K5), where K5 denotes the 5-clique.
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5 ... and via marshals and hypertree-width ...
Let H be a hypergraph and k ≥ 0 an integer. The Robber and k Marshals Game on H is played by two
players, I and II, on the hypergraph H . Player I plays k marshals and player II plays the robber. The
marshals move on the hyperedges of H , trying to catch the robber. In each move, some of the marshals
fly in helicopters to new hyperedges. The robber moves on the vertices of H . He sees where the marshals
will be landing and quickly tries to escape running arbitrarily fast along paths of H , not being allowed to
run through a vertex that is occupied by a marshal before and after the flight. Player I’s objective is to
land a marshal via helicopter on a hyperedge containing the vertex occupied by the robber. Player II tries
to elude capture. In the monotone version of the game, the marshals have to make sure, that in each step
the robber’s escape space decreases. The (monotone) marshal-width of a hypergraph H , mw(H) (and
mon-mw(H), respectively), is the least number k of marshals that have a (monotone) winning strategy in
the robber and k marshals game played on H (see [1], [3] for more precise definitions). For instance, the
hypergraph H from Example 1 satisfies mw(H) = mon-mw(H) = 2.

Lemma 4. hbramble-no(H) ≤ mw(H) for every hypergraph H .

Proof: Let B be a bramble in H of hyper-order k = hbramble-no(H). We show that the robber can
avoid being caught by k − 1 marshals: Suppose the game is in position (M,C), where M ⊆ E(H) with
|M | ≤ k−1 and C the component of H\(

⋃
M) containing a set BM ∈ B such that BM∩(

⋃
M) = ∅ (M

is the marshal’s position and C is the robber’s position). Note that C is unique, since any two elements
of B touch. Now the marshals move to N ⊆ E(H). Then the robber moves to the component D of
H \ (

⋃
N) containing a BN ∈ B with BN ∩ (

⋃
N) = ∅. This is possible, since BM and BN touch in

H \ (
⋃

M ∪
⋃

N). Thus, the robber can escape. 2

Let H be a hypergraph. A generalized hypertree decomposition of H is a triple (T,B,C), where
(T,B) is a tree decomposition of H and C = (Ct)t∈V (T ) is a family of subsets of E(H) such that for
every t ∈ V (T ) we have Bt ⊆

⋃
Ct. The width of (T,B,C) is min{|Ct| | t ∈ V (T )}. The generalized

hypertree-width ghw(H) of H is the minimum of the widths of the hypertree decompositions of H .
A hypertree decomposition of H is a generalized hypertree decomposition (T,B,C) that satisfies the

following special condition: (
⋃

Ct) ∩
⋃

u∈V (Tt)
Bu ⊆ Bt for all t ∈ V (T ). Recall that Tt denotes

the subtree of the T with root t. The hypertree-width hw(H) of H is the minimum of the widths of all
hypertree decompositions of H .

Theorem 5 ([1, 3]). mw(H) ≤ ghw(H) ≤ hw(H) = mon-mw(H) for every hypergraph H .

6 ... back to separators
Let H be a hypergraph and X ⊆ V (H). For every connected component C of H \X we let

∂C = {v ∈ X | there is a hyperedge e ∈ E(H) with v ∈ e and e ∩ C 6= ∅}.

Lemma 6. Let k ≥ 1, H a hypergraph with hlink(H) ≤ k, and M ⊆ E(H) with |M | ≤ 2k + 1.
Then there exists a set X ′ ⊆ E(H) with M ⊆ X ′ and |X ′| ≤ 3k + 1 such that for all components R′

of H \ (
⋃

X ′) there exists a subset M ′ ⊆ X ′ with |M ′| ≤ 2k and ∂R′ ⊆
⋃

M ′.
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Proof: Let S be a balanced separator for M with |S| ≤ k and X ′ := M ∪ S. Then M ⊆ X ′ and
|X ′| ≤ 3k + 1. Let R′ be a component of H \ (

⋃
X ′). Then R′ ⊆ C for a component C of H \ (

⋃
S).

Since S is a balanced separator for M , C is not M -big, i. e.

|{e ∈ M | e ∩ C 6= ∅}| ≤ |M |
2

=
2k + 1

2
.

Let M ′ := S ∪ {e ∈ M | e ∩ C 6= ∅}, then M ′ ⊆ X ′ and |M ′| ≤ k + k. Furthermore,

∂R′ ⊆
⋃
{e ∈ X ′ | e ∩ C 6= ∅} ⊆

⋃
S ∪

⋃
{e ∈ M | e ∩ C 6= ∅} =

⋃
M ′. 2

Lemma 7. mon-mw(H) ≤ 3 · hlink(H) + 1 for every hypergraph H .

Proof: Let hlink(H) = k. The marshals can make sure that each position (X, R) satisfies |X| ≤ 3k + 1
and ∂R ⊆

⋃
M for an M ⊆ X with |M | ≤ 2k:

Suppose this is true for (X, R). Choose e ∈ E(H) with e ∩R 6= ∅. Application of Lemma 6 to M ∪ {e}
yields X ′, s. t. for each possible escape space R′ with respect to X ′ there exists an M ′ ⊆ X ′ with
|M ′| ≤ 2k and ∂R′ ⊆

⋃
M ′. 2

7 Putting things together
Theorem 8. Let H be a hypergraph. Then

hlink(H) ≤ hbramble-no(H) ≤ mw(H) ≤ ghw(H) ≤ hw(H) ≤ 3 · hlink(H) + 1.

Example 3 shows that there is a hypergraph H for which the first inequality is strict. It is proved in
[1] that there are hypergraphs for which the third and fourth inequality, respectively, are strict. The fifth
inequality is strict for the trivial hypergraph consisting of one vertex and one hyperedge containing it. We
do not know if there is a hypergraph for which the second inequality is strict.

In the full paper, we also prove that hbramble-no(H) ≤ 2 · hlink(H). Furthermore, we introduce the
hypertangle number htangle-no(H) and the hyperbranch-width of a hypergraph H and prove that

htangle-no(H) ≤ hbramble-no(H) ≤ 3 · htangle-no(H)

and hbranch-width(H) ≤ ghw(H) ≤ 2 · hbranch-width(H).
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